Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanomedicine has had a profound impact on the treatment of many diseases, especially cancer. However, synthesis of multifunctional nanoscale drug carriers often requires multistep coupling and purification reactions, which can pose major scale-up challenges. Here, we leveraged bioinspired oxidation-triggered polymerization of catechols to synthesize nanoparticles (NPs) from the plant polyphenol quercetin (QCT) loaded with a hydrophobic anticancer drug, curcumin, and functionalized with poly(ethylene glycol) (PEG) for steric stabilization in one reaction step. NPs were formed by base-catalyzed oxidative self-polymerization of QCT in the presence of curcumin and thiol-terminated PEG upon mixing in a universal solvent (dimethyl sulfoxide), followed by self-assembly with the gradual addition of water. Dynamic light scattering and X-ray photoelectron spectroscopy were used to confirm NP PEGylation. Drug loading was verified by UV-vis spectroscopy. Curcumin-loaded NPs were efficiently internalized by CT26 murine colon cancer cells as determined by flow cytometry and confocal microscopy. NPs also demonstrated sustained release and potent cytotoxicity in vitro. Moreover, in vivo imaging of CT26 tumor-bearing Balb/c mice following tail vein injection of DiR-labeled QCT NPs showed steady tumor accumulation of the NPs up to 24 h. This was further supported by significant tumor uptake of curcumin-loaded QCT NPs as measured by flow cytometry analysis of tumor homogenates. Our findings present a greener synthetic route for the fabrication of drug-loaded surface-functionalized NPs from poorly water-soluble plant polyphenols such as QCT as promising anticancer delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.9b01240 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!