The modulation of phagocyte responses is essential for successful performance of biomaterials in order to prevent negative outcomes associated with inflammation. Herein, we developed electrospun poly(ε-caprolactone) (PCL) scaffolds doped with the novel potent c-Jun N-terminal kinase (JNK) inhibitors 11-indeno[1,2-]quinoxalin-11-one oxime () and 11-indeno[1,2-]quinoxalin-11-one -(-ethylcarboxymethyl) oxime() as a promising approach for modulating phagocyte activation. Optimized electrospinning parameters allowed us to produce microfiber composite materials with suitable mechanical properties. We found that embedded compounds were bound to the polymer matrix via hydrophobic interactions and released in two steps, with release mostly controlled by Fickian diffusion. The fabricated scaffolds doped with active compounds and effectively inhibited phagocyte inflammatory responses. For example, they suppressed human neutrophil activation by the biomaterials, as indicated by decreased neutrophil reactive oxygen species (ROS) production and Ca mobilization. In addition, they inhibited lipopolysaccharide (LPS)-induced NF-κB/AP-1 reporter activity in THP-1Blue cells and interleukin (IL)-6 production in MonoMac-6 cells without affecting cell viability. These effects were attributed to the released compounds rather than cell-surface interactions. Therefore, our study demonstrates that doping tissue engineering scaffolds with novel JNK inhibitors represents a powerful tool for preventing adverse immune responses to biomaterials as well as serves as a platform for drug delivery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.9b01401 | DOI Listing |
Nat Commun
January 2025
State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.
In this study, we introduce a highly effective non-metallic iodine single-atom catalyst (SAC), referred to as I-NC, which is strategically confined within a nitrogen-doped carbon (NC) scaffold. This configuration features a distinctive C-I coordination that optimizes the electronic structure of the nitrogen-adjacent carbon sites. As a result, this arrangement enhances electron transfer from peroxymonosulfate (PMS) to the active sites, particularly the electron-deficient carbon.
View Article and Find Full Text PDFRegen Biomater
November 2024
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
Nanohydroxyapatite (nHA) is distinguished by its exceptional biocompatibility, bioactivity and biodegradability, qualities attributed to its similarity to the mineral component of human bone. This review discusses the synthesis techniques of nHA, highlighting how these methods shape its physicochemical attributes and, in turn, its utility in biomedical applications. The versatility of nHA is further enhanced by doping with biologically significant ions like magnesium or zinc, which can improve its bioactivity and confer therapeutic properties.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
In this study, we present novel, vitrimeric and biobased scaffolds that are designed for hard tissue applications, composed of acrylated, epoxidized soybean oil (AESO) and reinforced with bioactive glass that is Tellurium doped (BG-Te) and BG-Te silanized, to tune the mechanical and antibacterial properties. The manufacture's method consisted of a DLP 3D-printing method, enabling precise resolution and the possibility to manufacture a hollow and complex structure. The resin formulation was optimized with a biobased, reactive diluent to adjust the viscosity for an optimal 3D-printing process.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Additive Technologies Center, Tomsk Polytechnic University, Tomsk 634050, Russia.
Electrospun poly(ε-caprolactone) (PCL)-based scaffolds are widely used in tissue engineering. However, low cell adhesion remains the key drawback of PCL scaffolds. It is well known that nitrogen-doped diamond-like carbon (N-DLC) coatings deposited on the surface of various implants are able to enhance their biocompatibility and functional properties.
View Article and Find Full Text PDFMolecules
December 2024
Department of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
Thermally activated delayed fluorescence (TADF) materials with high photoluminescence quantum yields and a fast reverse intersystem crossing (RISC) are of the highest interest for organic light-emitting diodes (OLEDs). In the past decade, triaryl boranes with multiple resonance effect (MR) have captured significant attention. The efficiency of MR-TADF emitters strongly depends on small singlet-triplet energy gaps (ΔE), but also on large reverse intersystem crossing (RISC) rate constants (k).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!