Microbial cellulose paper treated with polyaniline and carbon nanotubes (PANI/CNTs) can be attractive as potential flexible capacitors in terms of further improvements to the conductivity and thermal resistance. The interactions between PANI and CNTs exhibit new electrochemical features with increased electrical conductivity and enhanced capacity. In this study, PANI/CNTs was incorporated into a flexible poly(4-vinylaniline)-grafted bacterial cellulose (BC/PVAN) nanocomposite substrate for further functionalization and processability. PANI/CNTs coatings with a nanorod-like structure can promote an efficient ion diffusion and charge transfer, with a significant enhancement of the electrical conductivity after CNTs reinforcement of 1 order of magnitude up to (1.0 ± 0.3) × 10 S·cm. An escalating improvement of the double charge capacity (∼54 mF) of the grafted BC nanocomposites was also detected through electrochemical analysis. The multilayered electrical coatings also reinforce the thermal resistance, preventing anticipated thermal degradation of the BC substrate. The cell viability and differentiation assays using neural stem cells (SVZ cells) testified to the cytocompatibility of the grafted BC nanocomposites, while inducing neuronal differentiation over 7 days of culture with a neurite that was 77 ± 24.7 μm long. This is promising for meeting the requirements in the construction of high-performance bioelectronic devices that can actively interface biologically, providing a friendly environment for cells while tuning the device performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.9b00039 | DOI Listing |
Food Chem X
January 2025
Flavors and Fragrance Engineering & Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
The stabilities and sustained-release properties of citral are significant for foods. Herein, bacterial cellulose (BC) was innovatively reported for adsorption and sustained-release of citral via gas-phase adsorption technique, and the adsorption mechanism was disclosed. BC was prepared from tobacco stem waste extract (TSWE), and better adsorption capacity (124.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Textile Chemistry, Bandung Polytechnic of Textile Technology, Bandung, West Java, 40272, Indonesia.
Kombucha is a popular fermented beverage that involves fermentation using a symbiotic culture of bacteria and yeast (SCOBY) and produces bacterial cellulose (BC). Carbon and nitrogen sources are essential in kombucha processing and BC production. However, studies on cost-effective BC production as an alternative source of leather have remained scarce.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Marine Science and Technology, Shandong University, Qingdao, China.
Lignin, as the abundant carbon polymer, is essential for carbon cycle and biorefinery. Microorganisms interact to form communities for lignin biodegradation, yet it is a challenge to understand such complex interactions. Here, we develop a coastal lignin-degrading bacterial consortium (LD), through "top-down" enrichment.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
The marine ecosystem is characterized by a rich diversity of bacterial hosts and their phages. The propagation of phages is primarily limited by their ability to adsorb to host cells and is further challenged by various bacterial defense mechanisms. To fully realize the potential of phage therapy in aquaculture, a comprehensive understanding of phage-host interactions and their regulation is essential.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
The treatment of diabetic foot ulcers (DFUs) represents a significant challenge due to the complexity of the wound microenvironment. Several factors, including infection, inflammation, and impaired angiogenesis, can complicate the healing process and reduce the effectiveness of current clinical treatments. To address these challenges, this work develops a multifunctional sponge containing a zeolitic imidazolate framework-8/bacterial cellulose (ZIF-8/BC) matrix loaded with the antioxidant naringin (Nar).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!