Cell responses to oxide biomaterials depend on the protein adsorption behavior of the biomaterial surface. Thus, the inherent properties of oxide biomaterial surfaces play a key role in this process. However, commonly used biomaterials, such as calcium phosphate and titanium dioxide, have surfaces with strong mineralization, which may interfere with the ability to clarify the key aspects of the oxide biomaterial regarding protein adsorption and cellular processes. Here, nonmineralized crystalline and vitreous silica were selected as model oxide biomaterials to explore the inherent properties of these materials on the absorption behavior of the functional protein fibronectin (Fn) and on the osteogenic differentiation of mesenchymal stem cells (MSCs). We demonstrated that due to the smaller O binding energy, the weaker polarization of oxygen atoms in vitreous silica produced a greater amount of acidic hydroxyls after hydration compared to crystalline silica. These distinct features significantly upregulated the exposure of arginylglycylaspartic acid (RGD) and synergy sites (PHSRN) of Fn and eventually enhanced the osteogenic differentiation of MSCs on vitreous silica surfaces through activation of the integrin-linked kinase (ILK) signaling pathway. Our results highlight the key role of inherent oxide biomaterial crystallinity in protein adsorption and cell behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.9b00679 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!