A new generation of biomaterials are evolving from being biologically inert toward bioactive surfaces, which can further interact with biological components at the nanoscale. Here, we present directed irradiation synthesis (DIS) as a novel technology to selectively apply plasma ions to bombard any type of biomaterial and tailor the nanofeatures needed for growth stimulation. In this work, we demonstrate for the first time, the influence of physiochemical cues (e.g., self-organized topography at nanoscale) of medical grade TiAlV results in control of cell shape, adhesion, and proliferation of human aortic smooth muscle stem cells. The control of surface nanostructures was found to be correlated to ion-beam incidence angle linked to a surface diffusive regime during irradiation synthesis with argon ions at energies below 1 keV and a fluence of 2.5 × 10 cm. Cell viability and cytoskeleton morphology were evaluated at 24 h, observing an advance cell attachment state on post-DIS surfaces. These modified surfaces showed 84% of cell biocompatibility and an increase in cytoplasmatic protusions ensuring a higher cell adhesion state. Filopodia density was promoted by a 3-fold change for oblique incidence angle DIS treatment compared to controls (e.g., no patterning) and lamellipodia structures were increased more than a factor of 2, which are indicators of cell attachment stimulation due to DIS modification. In addition, the morphology of the nanofeatures were tailored, with high fidelity control of the main DIS parameters that control diffusive and erosive regimes of self-organization. We have correlated the morphology and the influence in cell behavior, where nanoripple formation is the most active morphology for cell stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.9b00469DOI Listing

Publication Analysis

Top Keywords

irradiation synthesis
12
cell
9
directed irradiation
8
cell stimulation
8
incidence angle
8
cell attachment
8
designing nanostructured
4
nanostructured tialv
4
tialv bioactive
4
bioactive interfaces
4

Similar Publications

T-helper 17 (Th17) cells significantly influence the onset and advancement of malignancies. This study endeavor focused on delineating molecular classifications and developing a prognostic signature grounded in Th17 cell differentiation-related genes (TCDRGs) using machine learning algorithms in head and neck squamous cell carcinoma (HNSCC). A consensus clustering approach was applied to The Cancer Genome Atlas-HNSCC cohort based on TCDRGs, followed by an examination of differential gene expression using the limma package.

View Article and Find Full Text PDF

ATM Expression and Activation in Ataxia Telangiectasia Patients with and without Class Switch Recombination Defects.

J Clin Immunol

January 2025

Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children´s Medical Center, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd, Tehran, 14194, Iran.

Background: Ataxia telangiectasia mutated (ATM) kinase plays a critical role in DNA double-strand break (DSB) repair. Ataxia telangiectasia (A-T) patients exhibit abnormalities in immunoglobulin isotype expression and class switch recombination (CSR). This study investigates the role of residual ATM kinase expression and activity in the severity of A-T disease.

View Article and Find Full Text PDF

Pancreatic cancer (PC) is the seventh most common cause of cancer-related death worldwide. The low survival rate may be due to late diagnosis and asymptomatic early-stage disease. Most patients are diagnosed at an advanced stage of the disease.

View Article and Find Full Text PDF

Hydrogels are widely utilized in industrial and scientific applications owing to their ability to immobilize active molecules, cells, and nanoparticles. This capability has led to their growing use in various biomedical fields, including cell culture and transplantation, drug delivery, and tissue engineering. Among the available synthesis techniques, ionizing-radiation-induced fabrication stands out as an environmentally friendly method for hydrogel preparation.

View Article and Find Full Text PDF

Genomic integrity is critical for cellular homeostasis, preventing the accumulation of mutations that can drive diseases such as cancer. Among the mechanisms safeguarding genomic stability, the Base Excision Repair (BER) pathway plays a pivotal role in counteracting oxidative DNA damage caused by reactive oxygen species. Central to this pathway are enzymes like 8-oxoguanine glycosylase 1 (OGG1), which recognize and excise 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) lesions, thereby initiating a series of repair processes that restore DNA integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!