Implant-related bacterial infections are one of the most common but tricky problems in orthopedic clinics because the formation of biofilms inhibits the penetration of antibiotics to kill bacteria effectively; thus, a new strategy is urgently needed. Antibacterial nanomaterials [e.g., copper (Cu)-based nanoparticles (NPs)] combined with near-infrared (NIR) irradiation show enhanced antibacterial activity against clinical bacteria. However, their antibacterial efficiency toward implant-related infections and against biofilm formation remains unclear. Here, unique polyethylene glycol-modified CuS NPs with good biocompatibility were synthesized. We found that the CuS NPs exhibited high photothermal performance and could increase the generation of reactive oxygen species under NIR irradiation (808 nm, 1 W cm). The CuS NPs with NIR irradiation successfully destroyed the bacterial structure, resulting in the death of the clinically derived growing on titanium (Ti) plates. Moreover, this excellent antibacterial activity was indicated to have a synergistic effect with photothermal therapy (PTT) and photodynamic therapy (PDT) by comparison to CuS with heating treatment in a water bath with similar temperature changes compared to NIR + CuS. Finally, the biofilm formation on the Ti plates was effectively disrupted by NIR + CuS treatment, while CuS with thermal treatment showed a mild impact. Hence, CuS NP-based PTT and PDT can provide a promising approach to eliminating implant-related bacteria and disrupting bacterial biofilms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.9b01280 | DOI Listing |
Pharmacol Biochem Behav
January 2025
Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; Department of Biomedical Science, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea. Electronic address:
Chronic alcoholism is known to have detrimental effects on the brain, including cognitive impairment, neurotransmitter imbalances, and brain atrophy. The hippocampus, crucial for spatial memory and cognitive functions, is particularly susceptible to alcohol-induced changes. Photobiomodulation (PBM), a non-invasive therapeutic method that utilizes red or near-infrared light, has shown promising applications in the central and peripheral nervous systems.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:
The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.
View Article and Find Full Text PDFSmall
January 2025
Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, P. R. China.
Topical transdermal drug delivery for psoriasis remains a challenge because of the poor solubility of hydrophobic drugs and the limited penetration of the stratum corneum. In this study, a near-infrared (NIR) light-responsive thermosensitive hydrogel (PDLLA-PEG-PDLLA, PLEL)-based drug reservoir is developed that directly incorporated gold nanorods (GNRs) and methotrexate (MTX) in the sol state at low temperature, which is referred to as PLEL@GNR+MTX. The in vitro anti-psoriasis experiment indicated that, GNRs, as photothermal cores of composite hydrogel, not only triggered keratinocyte apoptosis but also promoted MTX release in a synergistic manner.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
Light-driven micromotors with multiple motion modes offer significantly greater application potential than single-mode micromotors. However, achieving such versatility often requires complex structural designs and precise light focusing on specific micromotor regions, presenting challenges for dynamic operations and microscale precisions. This study introduces programmable assemblies of anisotropic micromotors driven by the photothermal Marangoni effect, produced in bulk microfluidic technology.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR.Cure Inc., Hwasun 58128, Republic of Korea. Electronic address:
Cancer photoimmunotherapy represents an intelligent and highly efficient therapeutic approach that harnesses the photothermal effect to precisely target and ablate tumor tissues, while simultaneously modulating the immune system to achieve tumor elimination. The integration of multifunctional therapeutic modalities for combined photoimmunotherapy requires advanced drug delivery systems. However, the design of a single nanoagent capable of serving as a multifunctional nanophotosensitizer remains a significant challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!