Based on the comprehensive evaluation system of agricultural green development index (AGDI), this paper uses entropy weight method and linear weighted sum method to measure the agricultural green development level of 31 provinces in China from 2013 to 2018. We then incorporate spatial correlation into the traditional convergence test model, study the spatial convergence of AGDI, and explore the reasons for regional differences in AGDI. The results show that the level of AGDI in China showed an overall growth trend during the sample survey period, but there were significant differences in the rate of AGDI among different regions, mainly manifested as "eastern > western > central." The AGDI shows a significant positive spatial correlation on the whole, and its overall spatial distribution is characterized by high-high agglomeration and low-low agglomeration. The provinces with higher and lower level of AGDI still maintain the original relatively concentrated distribution in geographical space. On this basis, the study examines the regional differences of AGDI and its evolution by Dagum Gini coefficient decomposition and spatial convergence. The results showed that the overall difference of AGDI showed a fluctuating downward trend. The intra-regional difference of AGDI in the western region was the largest, and that in the eastern region was the smallest. The contribution rate of intensity of transvariation among regions was the main source of the relative difference of AGDI. Meanwhile, the AGDI of the overall, eastern, central, and western regions present significant σ convergence and conditional β convergence. Except for the central region, the overall, eastern, and western regions present significant absolute β convergence. The low-level areas of AGDI have significant "catch-up effect" on the areas with high-level AGDI. Based on the above results, this paper also puts forward some policy suggestions from the perspective of cross-regional collaborative governance to improve China's agricultural green development mode and narrow the regional differences of China's agricultural green development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-11953-z | DOI Listing |
J Agric Food Chem
January 2025
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China.
The mitochondrial voltage-dependent anion channel (VDAC) is the major channel in the mitochondrial outer membrane for metabolites and ions. VDACs also regulate a variety of biological processes, which vary in the number of VDAC isoforms across different eukaryotes. However, little is known about VDAC-mediated biocontrol traits in biocontrol fungi.
View Article and Find Full Text PDFPest Manag Sci
January 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
Background: Bactrocera cucurbitae (Coquillett) is a distructive quarantine insect pest that causes significant economic losses on cucurbit crops. To explore a green control approach, we investigated the behavioral responses of B. cucurbitae larvae and adults to bacterial suspensions, sediments, and supernatants derived from eight gut microbial strains across four distinct genera.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Mechanical Engineering and Energy Technology, Lucerne University of Applied Sciences and Arts, CH-6048 Horw, Switzerland.
Automated agricultural robots are becoming more common with the decreased cost of sensor devices and increased computational capabilities of single-board computers. Weeding is one of the mundane and repetitive tasks that robots could be used to perform. The detection of weeds in crops is now common, and commercial solutions are entering the market rapidly.
View Article and Find Full Text PDFNutrients
December 2024
Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, FC, Italy.
: The water footprint (WF) provides information on the impact of individual foods on water consumption, but to better direct food production toward water saving, we need to understand how to reduce the WF of our diets while keeping it healthy. In this study, we compared the WF of healthy diets based on national food-based dietary guidelines with the aim of highlighting changes in dietary patterns that could reduce water requirements without compromising nutritional adequacy. : Three 2000 kcal/day dietary patterns were elaborated following the Italian, Spanish, and American dietary guidelines, and their total, green, blue, and grey WFs were calculated.
View Article and Find Full Text PDFFoods
January 2025
Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
Litchi is one of the ancient fruits that originated in China, renowned for its high nutrition and rich flavor, and Xianjinfeng (XJF) stands as one of the most notable varieties in terms of its flavor. Investigating the metabolic changes in taste compounds during fruit development offers deeper insights into the formation patterns of fruit quality. In this study, we conducted extensive metabonomic research on the accumulation patterns of taste compounds (carbohydrates, organic acids, and amino acids) across three developmental stages of XJF litchi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!