Allelic transmission ratio distortion (TRD) is the significant deviation from the expected ratio under Mendelian inheritance theory, which may be resulted from multiple disrupted biological processes, including germline selection, meiotic drive, gametic competition, imprint error, and embryo lethality. However, it is less known that whether or what extent the allelic TRD is present in farm animals. In this study, whole-genome resequencing technology was applied to reveal TRD loci in chicken by constructing a full-sib F hybrid population. Through the whole-genome resequencing data of two parents (30 ×) and 38 offspring (5 ×), we detected a total of 2850 TRD SNPs (p-adj < 0.05) located within 400 genes showing TRD, and all of them were unevenly distributed on macrochromosomes and microchromosomes. Our findings suggested that TRD in the chicken chromosome 16 might play an important role in chicken immunity and disease resistance and the MYH1F with significant TRD and allele-specific expression could play a key role in the fast muscle development. In addition, functional enrichment analyses revealed that many genes (e.g., TGFBR2, TGFBR3, NOTCH1, and NCOA1) with TRD were found in the significantly enriched biological process and InterPro terms in relation to embryonic lethality and germline selection. Our results suggested that TRD is considerably prevalent in the chicken genome and has functional implications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00438-020-01744-z | DOI Listing |
Orphanet J Rare Dis
January 2025
Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan.
Background: Sarcoglycanopathies (SGPs) are limb-girdle muscular dystrophies (LGMDs) that can be classified into four types, LGMDR3, LGMDR4, LGMDR5, and LGMDR6, caused by mutations in the genes, SGCA, SGCB, SGCG, and SGCD, respectively. SGPs are relatively rare in Japan. This study aims to profile the genetic variants that cause SGPs in Japanese patients.
View Article and Find Full Text PDFBMC Genom Data
January 2025
Key Laboratory of State Forestry and Grassland Administration Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Ji'nan, 250103, Shandong, China.
Objectives: Toona sinensis, commonly known as Chinese toon, is a perennial woody plant with significant economic and ecological importance. This study employed whole-genome resequencing of 180 T. sinensis samples collected from Shandong to analyze genetic variation and diversity, ultimately identifying 18,231 high-quality SNPs after rigorous quality control and linkage disequilibrium pruning.
View Article and Find Full Text PDFBMC Genomics
January 2025
Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, No. 3888 Chenhua Road, Songjiang District, Shanghai, 201602, China.
Background: Despite the rapid advancement of high-throughput sequencing, simple sequence repeats (SSRs) remain indispensable molecular markers for various applied and research tasks owing to their cost-effectiveness and ease of use. However, existing SSR markers cannot meet the growing demand for research on lotus (Nelumbo Adans.) given their scarcity and weak connections to the lotus genome.
View Article and Find Full Text PDFPLoS One
December 2024
Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou Province, China.
Objective: To verify the accuracy of collagen-specific SNP mutation loci of Kele pigs selected by whole genome resequencing, and to excavate collagen-related genes of Kele pigs, so as to lay a foundation for further molecular selection.
Methods: Based on whole genome resequencing, candidate genes related to collagen trait of Kele pig were screened for gene annotation. Through KEGG and GO enrichment analysis of differential genes, we selected four genes that may affect collagen trait of collagen pig, namely COL9A1, COL6A5, COL4A3 and COL4A4.
Appl Microbiol Biotechnol
December 2024
Graduate School of Agriculture, Kyoto University, Sakyo-Ku, Kitashirakawaoiwakecho, Kyoto, 606-8502, Japan.
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted genome editing has been applied to several major edible agaricomycetes, enabling efficient gene targeting. This method is promising for rapid and efficient breeding to isolate high-value cultivars and overcome cultivation challenges. However, the integration of foreign DNA fragments during this process raises concerns regarding genetically modified organisms (GMOs) and their regulatory restrictions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!