Processing of intraspecific chemical signals in the rodent brain.

Cell Tissue Res

Department of Molecular Medicine, University of Padova, via Marzolo 3, 35131, Padova, Italy.

Published: January 2021

In the rodent brain, the central processing of ecologically relevant chemical stimuli involves many different areas located at various levels within the neuraxis: the main and accessory olfactory bulbs, some nuclei in the amygdala, the hypothalamus, and brainstem. These areas allow the integration of the chemosensory stimuli with other sensory information and the selection of the appropriate neurohormonal and behavioral response. This review is a brief introduction to the processing of intraspecific chemosensory stimuli beyond the secondary projection, focusing on the activity of the relevant amygdala and hypothalamic nuclei, namely the medial amygdala and ventromedial hypothalamus. These areas are involved in the appropriate interpretation of chemosensory information and drive the selection of the proper response, which may be behavioral or hormonal and may affect the neural activity of other areas in the telencephalon and brainstem.Recent data support the notion that the processing of intraspecific chemical signals is not unique to one chemosensory system and some molecules may activate both the main and the accessory olfactory system. Moreover, both these systems have mixed projections and cooperate for the correct identification of the stimuli and selection of relevant responses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-020-03383-7DOI Listing

Publication Analysis

Top Keywords

processing intraspecific
12
intraspecific chemical
8
chemical signals
8
rodent brain
8
main accessory
8
accessory olfactory
8
chemosensory stimuli
8
processing
4
signals rodent
4
brain rodent
4

Similar Publications

Changes in blowfly (Diptera: Calliphoridae) wing morphology during succession in rat carcasses across forest and grassland habitats in South Brazil.

Insect Sci

January 2025

Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil.

Succession is one of the most extensively studied ecological phenomena, yet debates persist about the importance of dispersal and external factors in driving this process. We aimed to quantify the influence of these factors by investigating how wing-related traits evolve across succession of blowfly (Diptera: Calliphoridae) communities in South Brazil. Rat carrion was placed in both forest and grassland habitats, and the associated blowfly communities were documented throughout the decomposition process.

View Article and Find Full Text PDF

Investigating the causes and consequences of niche partitioning in populations is a major goal in ecology and evolutionary biology. Previous studies have investigated genetic and environmentally induced variation in resource utility and their ecological implications. However, few studies have explored variability (non-genetic, stochastic variation) as a factor contributing to variation in resource utility.

View Article and Find Full Text PDF

Wood formation is the Rosetta stone of tree physiology: a traceable, integrated record of physiological and morphological status. It also produces a large and persistent annual sink for terrestrial carbon, motivating predictive understanding. Xylogenesis studies have greatly expanded our knowledge of the intra-annual controls on wood formation, while dendroecology has quantified the environmental drivers of multi-annual variability.

View Article and Find Full Text PDF

Too Far From Relatives? Impact of the Genetic Distance on the Success of Exon Capture in Phylogenomics.

Mol Ecol Resour

January 2025

Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, EPHE, Sorbonne Université, Université Des Antilles, Paris, France.

The exon capture approach allows for sequencing a large number of loci to reconstruct phylogenetic relationships at varying taxonomic levels. In order to efficiently recover the targeted loci, the probes designed to capture the exons need to be genetically sufficiently similar to bind to the DNA, with a proposed limit of 10% of divergence. However, this threshold has never been tested with a specific protocol.

View Article and Find Full Text PDF

Understanding how wildlife responds to the spread of human-dominated habitats is a major challenge in ecology. It is still poorly understood how urban areas affect wildlife space-use patterns and consistent intra-specific behavioural differences (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!