A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thiamine: a key nutrient for yeasts during wine alcoholic fermentation. | LitMetric

Thiamine: a key nutrient for yeasts during wine alcoholic fermentation.

Appl Microbiol Biotechnol

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland, 7602, South Africa.

Published: February 2021

Alcoholic fermentation is a crucial step of winemaking, during which yeasts convert sugars to alcohol and also produce or biotransform numerous flavour compounds. In this context, nutrients are essential compounds to support yeast growth and ultimately ensure complete fermentation, as well as optimized production of flavour compounds over that of off-flavour compounds. In particular, the vitamin thiamine not only plays an essential cofactor role for several enzymes involved in various metabolic pathways, including those leading to the production of wine-relevant flavour compounds, but also aids yeast survival via thiamine-dependent stress protection functions. Most yeast species are able to both assimilate exogenous thiamine into the cell and synthesize thiamine de novo. However, the mechanism and level of thiamine accumulation depend on several factors. This review provides an in-depth overview of thiamine utilization and metabolism in the model yeast species Saccharomyces cerevisiae, as well as the current knowledge on (1) the intracellular functions of thiamine, (2) the balance between and regulation of uptake and synthesis of thiamine and (3) the multitude of factors influencing thiamine availability and utilization. For the latter, a particular emphasis is placed on conditions occurring during wine fermentation. The adequacy of thiamine concentration in grape must to ensure successful fermentation is discussed together with the effect of thiamine concentration on fermentation kinetics and on wine sensory properties. This knowledge may serve as a resource to optimise thiamine concentrations for optimal industrial application of yeasts. KEY POINTS: • Thiamine uptake is preferred over biosynthesis and is transcriptionally repressed. • Multiple factors affect thiamine synthesis, availability and uptake for wine yeast. • Thiamine availability impacts fermentation kinetics and wine's sensory properties.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-020-11080-2DOI Listing

Publication Analysis

Top Keywords

thiamine
15
flavour compounds
12
alcoholic fermentation
8
yeast species
8
thiamine availability
8
thiamine concentration
8
fermentation kinetics
8
sensory properties
8
• thiamine
8
fermentation
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!