Aims/hypothesis: Congenital hyperinsulinism caused by mutations in the K-channel-encoding genes (KHI) is a potentially life-threatening disorder of the pancreatic beta cells. No optimal medical treatment is available for patients with diazoxide-unresponsive diffuse KHI. Therefore, we aimed to create a model of KHI using patient induced pluripotent stem cell (iPSC)-derived islets.
Methods: We derived iPSCs from a patient carrying a homozygous ABCC8 mutation, which inactivates the sulfonylurea receptor 1 (SUR1) subunit of the K-channel. CRISPR-Cas9 mutation-corrected iPSCs were used as controls. Both were differentiated to stem cell-derived islet-like clusters (SC-islets) and implanted into NOD-SCID gamma mice.
Results: SUR1-mutant and -corrected iPSC lines both differentiated towards the endocrine lineage, but SUR1-mutant stem cells generated 32% more beta-like cells (SC-beta cells) (64.6% vs 49.0%, p = 0.02) and 26% fewer alpha-like cells (16.1% vs 21.8% p = 0.01). SUR1-mutant SC-beta cells were 61% more proliferative (1.23% vs 0.76%, p = 0.006), and this phenotype could be induced in SUR1-corrected cells with pharmacological K-channel inactivation. The SUR1-mutant SC-islets secreted 3.2-fold more insulin in low glucose conditions (0.0174% vs 0.0054%/min, p = 0.0021) and did not respond to K-channel-acting drugs in vitro. Mice carrying grafts of SUR1-mutant SC-islets presented with 38% lower fasting blood glucose (4.8 vs 7.7 mmol/l, p = 0.009) and their grafts failed to efficiently shut down insulin secretion during induced hypoglycaemia. Explanted SUR1-mutant grafts displayed an increase in SC-beta cell proportion and SC-beta cell nucleomegaly, which was independent of proliferation.
Conclusions/interpretation: We have created a model recapitulating the known pathophysiology of KHI both in vitro and in vivo. We have also identified a novel role for K-channel activity during human islet development. This model will enable further studies for the improved understanding and clinical management of KHI without the need for primary patient tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00125-020-05346-7 | DOI Listing |
J Family Med Prim Care
December 2024
Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia.
The Kabuki syndrome (KS) is a rare congenital disease that has two different types, KS1 and KS2, with variant in epigenetic gene KMT2D and KDM6A, respectively. It is associated with multiple abnormalities such as (developmental delay, atypical facial features, cardiac anomalies, minor skeleton anomalies, genitourinary anomalies, and mild to moderate intellectual disability). This syndrome can lead to neonatal hypoglycemia that results from hyperinsulinemia and electrolyte abnormalities.
View Article and Find Full Text PDFIntroduction: This is a report of a child with congenital hyperinsulinism associated with a loss-of-function variant in KCNE1. KCNE1 encodes a human potassium channel accessory (beta) subunit that modulates potassium channel Kv7.1 (encoded by KCNQ1).
View Article and Find Full Text PDFObesity, insulin resistance, and a host of environmental and genetic factors can drive hyperglycemia, causing β-cells to compensate by increasing insulin production and secretion. In type 2 diabetes (T2D), β-cells under these conditions eventually fail. Rare β-cell diseases like congenital hyperinsulinism (HI) also cause inappropriate insulin secretion, and some HI patients develop diabetes.
View Article and Find Full Text PDFCureus
December 2024
Clinical Genetics, Aster Malabar Institute of Medical Sciences, Kozhikode, IND.
Neonatal hypoglycemia (NH) is a common abnormality in newborns, posing significant morbidity risks. Prompt diagnosis and treatment are vital to mitigate brain damage and enhance outcomes. Congenital hyperinsulinemia (CHI) is a leading cause of recurrent hypoglycemia in infants, often stemming from genetic mutations such as in the gene, manifesting as hyperinsulinism-hyperammonemia syndrome (HI/HA).
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Clinical and Biomedical Science, University of Exeter Medical School, Exeter, United Kingdom.
Introduction: Congenital Hyperinsulinism (CHI) has not been previously studied in Ukraine. We therefore aimed to elucidate the genetics, clinical phenotype, histological subtype, treatment and long-term outcomes of Ukrainian patients with CHI.
Methods: Forty-one patients with CHI were recruited to the Ukrainian national registry between the years 2014-2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!