In this study, the characteristics of commercially pure titanium (hereinafter referred as CP-Ti)/Steel joints, brazed with Zr-Ti-Ni amorphous filler metal were analyzed. The effects of brazing temperature and time on the microstructure and joining strength of the CP-Ti/Steel joints were investigated. It was observed that Ti diffused into stainless steel substrate formed a brittle reaction zone, which contained intermetallic compounds, such as τ (TiCrFe), (Fe, -Ni)Ti, and FeTi, observed at the joint interface. As the brazing temperature and time increased, the width of the reaction layer in the joint was observed to increase. To suppress the oxidation of the substrates, the experiment was conducted at a cooling and heating speed of 100 °C/min, under a vacuum of 5×10 torr. The joining strength was observed to be significantly affected by the brazing conditions, such as temperature and duration time. The shear strength test showed that the strength increased for 15 min and then sharply decreased. This was attributed to the formation of brittle intermetallic compounds, like (Fe, Ni)Ti. The joint brazed at 880 °C for 15 min showed the maximum joining strength, of 216 MPa.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2021.18943DOI Listing

Publication Analysis

Top Keywords

joining strength
12
commercially pure
8
joint brazed
8
brazed zr-ti-ni
8
zr-ti-ni amorphous
8
amorphous filler
8
filler metal
8
cp-ti/steel joints
8
brazing temperature
8
temperature time
8

Similar Publications

Influence of Raster Orientation and Feeding Rate on the Mechanical Properties of Short Carbon Fiber-Reinforced Polyamide Printed by Fused-Filament Fabrication.

3D Print Addit Manuf

December 2024

Institute of Materials Science, Joining and Forming (IMAT), BMK Endowed Professorship for Aviation, Graz University of Technology, Graz, Austria.

Article Synopsis
  • Fused-filament fabrication (FFF) is an affordable and easy-to-use additive manufacturing method with numerous materials, but it involves many overlooked process variables.
  • This study focuses on less-studied variables like raster orientation angles and feeding rates to evaluate their effects on the mechanical properties of short carbon fiber-reinforced polyamide made by FFF.
  • The results showed that a combination of stacking layers at 0°/90° and +30°/-30° provides optimal tensile and flexural strengths, while increasing the flow rate did not enhance part density or mechanical properties.
View Article and Find Full Text PDF

Hypothesis: Nanoscale characterisation of the self-associated species formed by amphiphilic pharmaceuticals in aqueous solution carries relevance across their entire journey from development through to manufacture - relevant, therefore, not only as regards formulation of the drug products as medicines, but also potentially relevant to their bioavailability, activity, and clinical side effects. Such knowledge and understanding, however, can only be fully secured by applying a range of experimental and theoretical methodologies.

Experiments: Herein, we apply a synergistic combination of solubility, surface tension, SANS, NMR and UV spectroscopic studies, together with MD simulation and QM calculations, to investigate the meso-structures of propranolol hydrochloride aggregates in bulk aqueous solutions, at concentrations spanning 2.

View Article and Find Full Text PDF

In the first quarter of 2020, nearly all U.S. medical schools transitioned to virtual instruction and removed medical students from clinical settings because of the emerging COVID-19 pandemic.

View Article and Find Full Text PDF

Background: Recovery Colleges are mental health-oriented education programs that are rooted in principles of peer support and co-production. Co-production, in this context, involves people with lived experience of mental health and addiction challenges and people with other forms of expertise (e.g.

View Article and Find Full Text PDF

Shear strength dataset of hollow concrete block masonry with different mortar bedding.

Data Brief

December 2024

Facultad de Ingeniería Civil (FIC). Subdirección de Posgrado e Investigación, Universidad Autónoma de Nuevo León, Av. Universidad, s/n CP. 66455, San Nicolás de los Garza, Nuevo León, Mexico.

Masonry is a construction material composed of units (blocks or bricks) joined with mortar. It is one of the most widely used materials in construction resisting both vertical and horizontal forces in single and multi-family housing buildings. A correct union between the units and the mortar (interface) is essential, as is determining the resistance from the applied loads.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!