Microstructure, Electrical and Thermal Conductivity of the As-Extruded Al-MM (Mischmetal) Based Alloys.

J Nanosci Nanotechnol

EV Components & Materials Group, Korea Institute of Industrial Technology, 1110-9 Oryong-dong, Buk-gu, Gwangju 61012, Republic of Korea.

Published: March 2021

The effect of addition of Mischmetal (MM) on the microstructure, electrical and thermal conductivity, and mechanical properties of the as-extruded Al-MM based alloys were investigated. The studied AlMM alloys (where = 0.2, 0.5, 1.0, 1.5, 2.0 and 5.0 wt.%) were cast and homogenized at 550 °C for 4 h. The cast billets were extruded into 12 mm bars with an extrusion ratio of 39 at 550 °C. The addition of MM resulted in the formation of Al(Ce, La)₃ intermetallic compounds and the area fraction of these intermetallic compounds increased with an increase in the MM content. The Al(Ce, La)₃ phase, which was distributed in the as-cast alloys, was crushed into fine particles and arrayed along the extruded direction during the extrusion process. In particular, these intermetallic compounds in the extruded Al-5.0MM alloy were distributed with a wide-band structure due to the fragmentation of the eutectic phase with a lamellar structure. As the MM content increased from 1.0 wt.% to 5.0 wt.%, the average grain size decreased remarkably from 740 to 73 μm. This was due to formation of Al(Ce, La)₃ particles during the hot extrusion process, which promoted dynamic recrystallization and suppression of grain growth. The electrical and thermal conductivity of the extruded alloys containing up to 2.0 wt.% MM were around 60.5% IACS and 230 W/m · K, respectively. However, the electrical and thermal conductivity of the extruded alloy with 5.0 wt.% MM decreased to 55.4% IACS and 206 W/m · K, respectively. As the MM content increased from 1.0 wt.% to 5.0 wt.%, the ultimate tensile strength (UTS) was improved remarkably from 74 to 119 MPa which was attributed to the grain refinement and formation of Al(Ce, La)₃ intermetallic compounds by the addition of MM.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2021.18917DOI Listing

Publication Analysis

Top Keywords

electrical thermal
16
thermal conductivity
16
alce la₃
16
intermetallic compounds
16
formation alce
12
microstructure electrical
8
as-extruded al-mm
8
based alloys
8
alloys wt%
8
550 °c
8

Similar Publications

Phase change materials (PCMs) have been widely recognized as a highly efficient medium for thermal energy storage. Many studies have identified the low thermal conductivity of PCMs. In the current investigation, the researchers have blended PCM with nanoparticles to enhance its thermal conductivity and electrical efficiency.

View Article and Find Full Text PDF

Heat accumulation due to repetitive simple laser processing paths during building up a three-dimensional structure is a well-known issue that needs to be settled to reduce the excessively high residual stress and thermal deformation in a powder bed fusion (PBF) additive manufacturing process. Because of the dependency of laser path on the thermal dispersion, it is essential to analyze the heat accumulation phenomenon during laser processing. A computational fluid dynamics (CFD) analysis based on the volume of fraction method is used to optimize the laser path for minimizing the local heating up in the PBF process.

View Article and Find Full Text PDF

The application of multi-scale simulation in advanced electronic packaging.

Fundam Res

November 2024

School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.

Electronic packaging is an essential branch of electronic engineering that aims to protect electronic, microelectronic, and nanoelectronic systems from environmental conditions. The design of electronic packaging is highly complex and requires the consideration of multi-physics phenomena, such as thermal transport, electromagnetic fields, and mechanical stress. This review presents a comprehensive overview of the multiphysics coupling of electric, magnetic, thermal, mechanical, and fluid fields, which are crucial for assessing the performance and reliability of electronic devices.

View Article and Find Full Text PDF

High photothermal conversion efficiency of RF sputtered TiO Magneli phase thin films and its linear correlation with light absorption capacity.

Sci Rep

December 2024

Centre Énergie, Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Blvd, Lionel-Boulet, Varennes, QC, J3X-1P7, Canada.

RF-sputtering is used to deposit TiO-Magneli-phase films onto various substrates at deposition temperatures (T) ranging from 25 to 650 °C. Not only the structural, but also electrical conductivity, optical absorbance and photothermal properties of the TiO films are shown to change significantly with T. A T of 500 °C is pointed out as the optimal temperature that yields highly-crystalized pure-TiO-Magneli phase with a densely-packed morphology and a conductivity as high as 740 S/cm.

View Article and Find Full Text PDF

Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!