Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14789450.2020.1873134 | DOI Listing |
Am J Clin Dermatol
January 2025
Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
Individualized neoantigen-directed therapy represents a groundbreaking approach in melanoma treatment that leverages the patient's own immune system to target cancer cells. This innovative strategy involves the identification of unique immunogenic neoantigens (mutated proteins specific to an individual's tumor) and the development of therapeutic vaccines that either consist of peptide sequences or RNA encoding these neoantigens. The goal of these therapies is to induce neoantigen-specific immune responses, enabling the immune system to recognize and destroy cancer cells presenting the targeted neoantigens.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method.
View Article and Find Full Text PDFMolecules
January 2025
State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China.
Drug development faces significant financial and time challenges, highlighting the need for more efficient strategies. This study evaluated the druggability of the entire human proteome using Fpocket. We identified 15,043 druggable pockets in 20,255 predicted protein structures, significantly expanding the estimated druggable proteome from 3000 to over 11,000 proteins.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Pharmacology & Therapeutics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3T 0T6, Canada.
Lung cancer is the leading cause of cancer-related deaths worldwide, highlighting a major clinical challenge. Lung cancer is broadly classified into two histologically distinct subtypes, termed small cell lung cancer (SCLC) or non-small cell lung cancer (NSCLC). Identification of various oncogenic drivers of NSCLC has facilitated the development of targeted therapies that have dramatically improved patient outcomes.
View Article and Find Full Text PDFMol Cell Proteomics
January 2025
Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, Utrecht 3584 CH, The Netherlands; Netherlands Proteomics Center, Padualaan 8, Utrecht 3584 CH, The Netherlands. Electronic address:
Protein kinases are prime targets for drug development due to their involvement in various cancers. However, selective inhibition of kinases, while avoiding off-target effects remains a significant challenge for the development of protein kinase inhibitors. Activity-based protein profiling (ABPP), in combination with pan-kinase activity-based probes (ABPs) and mass spectrometry-based proteomics, enables the identification of kinase drug targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!