The simultaneous local delivery of anti-inflammatory and proangiogenic agents via biomaterial scaffolds presents a promising method for improving the engraftment of tissue-engineered implants while avoiding potentially detrimental systemic delivery. In this study, polydimethylsiloxane (PDMS) microbeads were loaded with either anti-inflammatory dexamethasone (Dex) or proangiogenic 17β-estradiol (E2) and subsequently integrated into a single macroporous scaffold to create a controlled, dual-drug delivery platform. Compared to a standard monolithic drug dispersion scaffold, macroporous scaffolds containing drug-loaded microbeads exhibited reduced initial burst release and increased durability of drug release for both agents. The incubation of scaffolds with lipopolysaccharide (LPS)-stimulated M1 macrophages found that Dex suppressed the production of proinflammatory and proangiogenic factors when compared to drug-free control scaffolds; however, the coincubation of macrophages with Dex and E2 scaffolds restored their proangiogenic features. Following implantation, Dex-loaded microbead scaffolds (Dex-μBS) suppressed host cell infiltration and integration, when compared to controls. In contrast, the codelivery of dexamethasone with estrogen from the microbead scaffold (Dex+E2-μBS) dampened overall host cell infiltration, but restored graft vascularization. These results demonstrate the utility of a microbead scaffold approach for the controlled, tailored, and local release of multiple drugs from an open framework implant. It further highlights the complementary impacts of local Dex and E2 delivery to direct the healthy integration of implants, which has broad applications to the field of tissue engineering and regenerative medicine. Impact statement Inflammatory responses and vascularization are two significant challenges associated with the engraftment of tissue-engineered implants. To overcome these challenges, we developed a microbead scaffold platform for the local delivery of anti-inflammatory and proangiogenic agents. This drug delivery system showed the potential to simultaneously control the release of multiple agents, leading to a healthy integration of implants with host tissues. This multifunctional platform could be useful to numerous cellular transplants and engineered tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEA.2020.0287 | DOI Listing |
Theranostics
January 2025
Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.
Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Anatomy, Hunan University of Chinese Medicine, Changsha 410208, China.
Diabetic wounds present a considerable challenge in modern medicine due to their prolonged healing process, driven by sustained inflammation and impaired vascular regeneration. This study introduces a novel hydrogel network through osmosis, utilizing hyaluronic acid (HA) and phytic acid (PA) for their anti-inflammatory and antioxidant properties, respectively. By incorporating recombinant Human Amelogenin (rhAM), known for its angiogenic potential, we aimed to develop the HA-PA-rhAM hydrogel to enhance wound healing in diabetic rats.
View Article and Find Full Text PDFOpen Med (Wars)
January 2025
The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China.
Some of the millions of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have developed new sequelae after recovering from the initial disease, termed post-acute sequelae of coronavirus disease 2019 (PASC). One symptom is anxiety, which is likely due to three etiologies: brain structural changes, neuroendocrine disruption, and neurotransmitter alterations. This review provides an overview of the current literature on the pathophysiological pathways linking coronavirus disease 2019 to anxiety, as well as the possible mechanisms of action in which an increasingly scrutinized treatment method, enhanced external counter-pulsation (EECP), is able to alleviate anxiety.
View Article and Find Full Text PDFSci Rep
January 2025
A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
Epigenetic therapy has gained interest in treating cardiovascular diseases, but preclinical studies often encounter challenges with cell-type-specific effects or batch-to-batch variation, which have limited identification of novel drug candidates targeting angiogenesis. To address these limitations and improve the reproducibility of epigenetic drug screening, we redesigned a 3D in vitro fibrin bead assay to utilize immortalized human aortic endothelial cells (TeloHAECs) and screened a focused compound library with 105 agents. Compared to the established model using primary human umbilical vein endothelial cells, TeloHAECs needed a higher-density fibrin gel for optimal sprouting, successfully forming sprouts under both normoxic and hypoxic cell culture conditions.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Vascular Surgery, Zhongshan Hospital Fudan University, Shanghai, 200032, PR China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!