Early leaf spot (ELS) and late leaf spot (LLS) are major fungal diseases of peanut that can severely reduce yield and quality. Development of acceptable genetic resistance has been difficult due to a strong environmental component and many major and minor QTLs. Resistance genes (R-genes) are an important component of plant immune system and have been identified in peanut. Association of specific R-genes to leaf spot resistance will provide molecular targets for marker-assisted breeding strategies. In this study, advanced breeding lines from different pedigrees were evaluated for leaf spot resistance and 76 candidate R-genes expression study was applied to susceptible and resistant lines. Thirty-six R-genes were differentially expressed and significantly correlated with resistant lines, of which a majority are receptor like kinases (RLKs) and receptor like proteins (RLPs) that sense the presence of pathogen at the cell surface and initiate protection response. The largest group was receptor-like cytoplasmic kinases (RLCKs) VII that are involved in pattern-triggered kinase signaling resulting in the production reactive oxygen species (ROS). Four R-genes were homologous to TMV resistant protein N which has shown to confer resistance against tobacco mosaic virus (TMV). When mapped to peanut genomes, 36 R-genes were represented in most chromosomes except for A09 and B09. Low levels of gene-expression in resistant lines suggest expression is tightly controlled to balance the cost of R-gene expression to plant productively. Identification and association of R-genes involved in leaf spot resistance will facilitate genetic selection of leaf spot resistant lines with good agronomic traits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884587 | PMC |
http://dx.doi.org/10.1007/s11033-020-06049-3 | DOI Listing |
Plant Dis
January 2025
Guangxi Academy of Agricultural Sciences, Institute of plant protection, 174, daxuedong road, nanning, Guangxi, Nanning, Guangxi, China, X2ogGBuM.
Hymenocallis littoralis (Jacq.) Salisb. is a secondary protected plant in China with high ornamental value (Nadaf et al.
View Article and Find Full Text PDFPlant Dis
January 2025
Guizhou University, Guizhou University, Guiyang, Guiyang, Guizhou, China, 550025;
During a field study in the Baili Azalea Forest Area in Guizhou Province, China (27°12'N, 105°48'E) between May and July 2023, symptoms of leaf spot were observed on Franch. The incidence of leaf spot on leaves was about 12% in a field of 1 hm2, significantly reducing their ornamental and economic value. The affected leaves bore irregular, grey-white lesions with distinct dark brown borders, accompanied by black conidiomata.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Biosecurity and Microbial Forensics (IBMF), Oklahoma State University, Stillwater, OK, USA.
Exclusion is a keystone of integrated pest management to prevent the introduction of pathogens. U.S.
View Article and Find Full Text PDFPlant Dis
January 2025
Jiangxi Agricultural University, College of Agriculture, Nanchang, Jiangxi, China;
is a large cosmopolitan genus of plant pathogenic fungi that are commonly associated with leaf and fruit spots as well as blights on a wide range of plant hosts. is a member of this genus, causing sooty spot on kiwifruit worldwide. With the expansion of kiwifruit cultivation, the incidence of sooty spot has become severe in Fengxin County, Jiangxi Province, China.
View Article and Find Full Text PDFPlant Dis
January 2025
USDA-ARS , Ithaca, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!