Early leaf spot (ELS) and late leaf spot (LLS) are major fungal diseases of peanut that can severely reduce yield and quality. Development of acceptable genetic resistance has been difficult due to a strong environmental component and many major and minor QTLs. Resistance genes (R-genes) are an important component of plant immune system and have been identified in peanut. Association of specific R-genes to leaf spot resistance will provide molecular targets for marker-assisted breeding strategies. In this study, advanced breeding lines from different pedigrees were evaluated for leaf spot resistance and 76 candidate R-genes expression study was applied to susceptible and resistant lines. Thirty-six R-genes were differentially expressed and significantly correlated with resistant lines, of which a majority are receptor like kinases (RLKs) and receptor like proteins (RLPs) that sense the presence of pathogen at the cell surface and initiate protection response. The largest group was receptor-like cytoplasmic kinases (RLCKs) VII that are involved in pattern-triggered kinase signaling resulting in the production reactive oxygen species (ROS). Four R-genes were homologous to TMV resistant protein N which has shown to confer resistance against tobacco mosaic virus (TMV). When mapped to peanut genomes, 36 R-genes were represented in most chromosomes except for A09 and B09. Low levels of gene-expression in resistant lines suggest expression is tightly controlled to balance the cost of R-gene expression to plant productively. Identification and association of R-genes involved in leaf spot resistance will facilitate genetic selection of leaf spot resistant lines with good agronomic traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7884587PMC
http://dx.doi.org/10.1007/s11033-020-06049-3DOI Listing

Publication Analysis

Top Keywords

leaf spot
28
spot resistance
16
resistant lines
16
differentially expressed
8
resistance will
8
leaf
7
spot
7
resistance
7
r-genes
7
lines
5

Similar Publications

Anthracnose Leaf spot on Caused by in Guangxi, China.

Plant Dis

January 2025

Guangxi Academy of Agricultural Sciences, Institute of plant protection, 174, daxuedong road, nanning, Guangxi, Nanning, Guangxi, China, X2ogGBuM.

Hymenocallis littoralis (Jacq.) Salisb. is a secondary protected plant in China with high ornamental value (Nadaf et al.

View Article and Find Full Text PDF

First report of causing leaf spot on in China.

Plant Dis

January 2025

Guizhou University, Guizhou University, Guiyang, Guiyang, Guizhou, China, 550025;

During a field study in the Baili Azalea Forest Area in Guizhou Province, China (27°12'N, 105°48'E) between May and July 2023, symptoms of leaf spot were observed on Franch. The incidence of leaf spot on leaves was about 12% in a field of 1 hm2, significantly reducing their ornamental and economic value. The affected leaves bore irregular, grey-white lesions with distinct dark brown borders, accompanied by black conidiomata.

View Article and Find Full Text PDF

Exclusion is a keystone of integrated pest management to prevent the introduction of pathogens. U.S.

View Article and Find Full Text PDF

, a new species causing sooty spot of kiwifruit in China.

Plant Dis

January 2025

Jiangxi Agricultural University, College of Agriculture, Nanchang, Jiangxi, China;

is a large cosmopolitan genus of plant pathogenic fungi that are commonly associated with leaf and fruit spots as well as blights on a wide range of plant hosts. is a member of this genus, causing sooty spot on kiwifruit worldwide. With the expansion of kiwifruit cultivation, the incidence of sooty spot has become severe in Fengxin County, Jiangxi Province, China.

View Article and Find Full Text PDF
Article Synopsis
  • The Chinese hibiscus is a popular decorative and medicinal plant, but it is vulnerable to various bacterial infections.
  • In March 2019, a bacterial isolate named "Hibiscus 35-1" was identified from affected hibiscus plants in a New York greenhouse, showing leaf spots and chlorosis after being moved from Florida.
  • Experiments confirmed the pathogenicity of "Hibiscus 35-1," causing symptoms in inoculated hibiscus plants while control plants showed no symptoms, highlighting the significance of bacterial pathogens in ornamental horticulture.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!