Boundary-Condition Analysis of an Idealized Left Atrium Model.

Ann Biomed Eng

Departamento de Ingeniería Energética, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain.

Published: June 2021

The most common type of cardiac arrhythmia is atrial fibrillation (AF), which is characterised by irregular and ineffective atrial contraction. This behaviour results into the formation of thrombi, mainly in the left atrial appendage (LAA), responsible for thromboembolic events. Very different approaches are considered as therapy for AF patients. Therefore, it is necessary to yield insight into the flow physics of thrombi formation to determine which is the most appropriate strategy in each case. Computational Fluid Dynamics (CFD) has proven successful in getting a better understanding of the thrombosis phenomenon, but it still requires validation by means of accurate flow field in vivo atrial measurements. As an alternative, in this paper it is proposed an in vitro flow validation, consisting in an idealised model that captures the main flow features observed in the human LA which, once combined with Particle Image Velocimetry (PIV) measurements, provides readily accessible, easy to emulate, detailed velocity fields. These results have been used to validate our laminar and Large Eddy Simulation (LES) simulations. Besides, we have run a parametric study of different boundary conditions sets previously employed in the literature. These data can be used as a benchmark for further development of LA CFD models.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-020-02702-xDOI Listing

Publication Analysis

Top Keywords

boundary-condition analysis
4
analysis idealized
4
idealized left
4
left atrium
4
atrium model
4
model common
4
common type
4
type cardiac
4
cardiac arrhythmia
4
atrial
4

Similar Publications

Inductively coupled plasma mass spectrometry (ICP-MS) has demonstrated significant capabilities in the analysis of single events, such as single cells and particles. Researchers have been actively pursuing innovations in ICP-MS sample introduction systems to enhance their transport efficiency, as this is critical for ensuring the accuracy of single-event analysis. However, the majority of prior studies have relied heavily on empirical approaches, with limited attention given to the individual characteristics of particles from a theoretical perspective and a lack of efficient manufacturing tools for optimizing related components.

View Article and Find Full Text PDF

Modeling of Electric Field and Dielectrophoretic Force in a Parallel-Plate Cell Separation Device with an Electrode Lid and Analytical Formulation Using Fourier Series.

Sensors (Basel)

December 2024

Department of Applied Physics, National Defense Academy, Hashirimizu 1-10-20, Yokosuka 239-0802, Kanagawa, Japan.

Dielectrophoresis (DEP) cell separation technology is an effective means of separating target cells which are only marginally present in a wide variety of cells. To develop highly efficient cell separation devices, detailed analysis of the nonuniform electric field's intensity distribution within the device is needed, as it affects separation performance. Here we analytically expressed the distributions of the electric field and DEP force in a parallel-plate cell separation DEP device by employing electrostatic analysis through the Fourier series method.

View Article and Find Full Text PDF

Background: Operative delivery is a technique used during vaginal or cesarean birth to facilitate the patient's labor course through the assistance of a vacuum extractor. This method is increasingly used compared with forceps. This study aimed to investigate the forced effects of vacuum extractors comprising vacuum cups with different thicknesses on the fetal head and the vacuum extractor during vacuum-assisted delivery and to determine the optimal thickness for reducing the failure rate and minimizing neonatal and maternal morbidity.

View Article and Find Full Text PDF
Article Synopsis
  • Bridges in mining areas experience deformations due to surface subsidence from underground mining, which can affect both the bridge structure and the foundation soil.
  • The study focuses on a bridge in the Fengfeng mining area, using a probabilistic integral method to predict subsidence and constructing a finite element model for more accurate simulations.
  • Collected monitoring data helps validate the simulation's accuracy, analyze discrepancies, and refine the model to predict potential bridge failure based on surface subsidence over time.
View Article and Find Full Text PDF

In this paper, the mathematical model of the aviation pressure servo valve controlled actuator system(APSVCAS) considering nonlinearity is established based on a jet pipe pressure servo valve in this article. And the dynamic characteristics and stability boundary of APSVCAS are analyzed, which provides theoretical guidance for the actual composition and the determination of parameters. Firstly, a jet-tube two-stage pressure servo valve for aviation hydraulic system is designed, and an accurate model of APSVCAS is established considering multiple nonlinear factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!