Background: In recent years, the study of potential epigenetic biomarkers in feces has been an attractive research approach for the noninvasive diagnosis of colorectal cancer (CRC). The aim of this study was to evaluate the stool-based DNA methylation potential of SRY-Box 21 (SOX21) gene promoter as an appropriate candidate biomarker for differentiating CRC patients and healthy individuals for the first time.

Methods: The MethyLight method was performed to analyze the methylation status of SOX21 gene promoter in fecal samples from 40 patients with CRC and 40 healthy controls. In addition, the diagnostic efficiency of measuring the hypermethylated SOX21 gene in the feces to the fecal occult blood test (FOBT) was compared.

Results: The percentage of methylated reference (PMR) values in the stool of CRC patients (median 1.44) was higher than those of healthy individuals (median 0.00) (P < 0.001). A sensitivity of 72.5% and specificity of 100% were obtained for SOX21 gene promoter methylation status and 29 of the patients were considered as positive in methylation status. There was no significant association between PMR values and demographic/clinicopathological features (P > 0.05).

Conclusion: The results of the present study demonstrated that the stool-based assay of SOX21 gene promoter methylation has a relatively high sensitivity and specificity and it may serve as a noninvasive biomarker for early detection of CRC. However, more studies with a wide range of samples are required to further confirm the role of hypermethylation of SOX21 in the early CRC diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.4103/ijc.IJC_37_19DOI Listing

Publication Analysis

Top Keywords

gene promoter
20
sox21 gene
20
promoter methylation
12
methylation status
12
noninvasive biomarker
8
biomarker early
8
diagnosis colorectal
8
colorectal cancer
8
methylight method
8
crc patients
8

Similar Publications

Interleukin-10 (IL-10) is an immunomodulatory molecule that may play an immunosuppressive role in nonmelanoma skin cancer (NMSC), specifically basal cell carcinoma (BCC). We analyzed the role of IL10 promoter variants in genetic determinants of BCC susceptibility and their association with IL10 mRNA and IL-10 serum levels. Three promoter variants (- 1082 A > G, - 819 T > C, and - 592 A > C) were examined in 250 BCC patients and 250 reference group (RG) individuals.

View Article and Find Full Text PDF

p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.

View Article and Find Full Text PDF

Genomic imprinting is the parent-of-origin dependent monoallelic expression of genes often associated with regions of germline-derived DNA methylation that are maintained as differentially methylated regions (gDMRs) in somatic tissues. This form of epigenetic regulation is highly conserved in mammals and is thought to have co-evolved with placentation. Tissue-specific gDMRs have been identified in human placenta, suggesting that species-specific imprinting dependent on unorthodox epigenetic establishment or maintenance may be more widespread than previously anticipated.

View Article and Find Full Text PDF

Inducible engineering precursor metabolic flux for synthesizing hyaluronic acid of customized molecular weight in Streptococcus zooepidemicus.

Microb Cell Fact

January 2025

MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.

Background: Hyaluronic acid (HA) is extensively employed in various fields such as medicine, cosmetics, food, etc. The molecular weight (MW) of HA is crucial for its biological functions. Streptococcus zooepidemicus, a prominent HA industrial producer, naturally synthetizes HA with high MW.

View Article and Find Full Text PDF

Cancer cells frequently rewire their metabolism to support proliferation and evade immune surveillance, but little is known about metabolic targets that could increase immune surveillance. Here we show a specific means of mitochondrial respiratory complex I (CI) inhibition that improves tumor immunogenicity and sensitivity to immune checkpoint blockade (ICB). Targeted genetic deletion of either Ndufs4 or Ndufs6, but not other CI subunits, induces an immune-dependent growth attenuation in melanoma and breast cancer models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!