Cholesterol, steroid alcohol, was discovered by M.E. Chevreul in 1815. Cholesterol and its derivatives showed a large variety of biological properties such as anticancer activity, anticardiac activity, anti-inflammatory activity, antimicrobial activity, anti-psychotic activity, antioxidant activity, drug-loaded activity, etc. In this mini-review, the advances of structural modification of cholesterol from 2014 to 2020 are summarized. In addition, the bioactivities, mechanisms of action and structureactivity relationships of cholesterol and its related derivatives are also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389557521666210105123320DOI Listing

Publication Analysis

Top Keywords

structural modification
8
mechanisms action
8
relationships cholesterol
8
cholesterol derivatives
8
activity
7
cholesterol
5
cholesterol bioactivities
4
bioactivities structural
4
modification mechanisms
4
action structure-activity
4

Similar Publications

Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery.

View Article and Find Full Text PDF

The retention behavior in supercritical fluid chromatography (SFC) remains a complex and poorly understood phenomenon despite the development of various models to explain retention mechanisms. This study aims to deepen the understanding of retention by investigating three distinct stationary phases: high-strength silica octadecyl (HSS C18 SB), charged surface hybrid pentafluorophenyl (CSH PFP), and porous graphitic carbon (PGC) as a nonsilica-based phase. Three mobile phase compositions, i.

View Article and Find Full Text PDF

The SiO electrode interface is passivated with a SiO layer, which hinders the deposition of an inorganic solid electrolyte interphase (SEI) due to its high surface work function and low exchange current density of electrolyte decomposition. Consequently, a thermally vulnerable, organic-based SEI formed on the SiO electrode, leading to poor cycling performance at elevated temperatures. To address this issue, the SEI formation process is thermoelectrochemically activated.

View Article and Find Full Text PDF

The serine/threonine protein kinase CK2, a tetramer composed of a regulatory dimer (CK2β2) bound to two catalytic subunits CK2α, is a well-established therapeutic target for various pathologies, including cancer and viral infections. Several types of CK2 inhibitors have been developed, including inhibitors that bind to the catalytic ATP-site, bivalent inhibitors that occupy both the CK2α ATP-site and the αD pocket, and inhibitors that target the CK2α/CK2β interface. Interestingly, the bivalent inhibitor AB668 shares a similar chemical structure with the interface inhibitor CCH507.

View Article and Find Full Text PDF

Efficient CO2 capture at concentrations between 400-2000 ppm is essential for maintaining air quality in a habitable environment and advancing carbon capture technologies. This study introduces NICS-24 (National Institute of Chemistry Structures No. 24), a Zn-oxalate 3,5-diamino-1,2,4-triazolate framework with two distinct square-shaped channels, designed to enhance CO2 capture at indoor-relevant concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!