AI Article Synopsis

Article Abstract

We consider situations where repeated invasion attempts occur from a source population into a receptor population over extended periods of time. The receptor population contains two locations that provide different expected offspring numbers to invaders. There is demographic stochasticity in offspring numbers. In addition, temporal variation causes local invader fitnesses to vary. We show that effects of environmental autocorrelation on establishment success depend on spatial covariance of the receptor subpopulations. In situations with a low spatial covariance this effect is positive, whereas high spatial covariance and/or high migration probabilities between the subpopulations causes the effect to be negative. This result reconciles seemingly contradictory results from the literature concerning effects of temporal variation on population dynamics with demographic stochasticity. We study an example in the context of genetic introgression, where invasions of cultivar plant genes occur through pollen flow from a source population into wild-type receptor populations, but our results have implications in a wider range of contexts, such as the spread of exotic species, metapopulation dynamics and epidemics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892406PMC
http://dx.doi.org/10.1098/rspb.2020.2009DOI Listing

Publication Analysis

Top Keywords

spatial covariance
12
source population
8
receptor population
8
offspring numbers
8
demographic stochasticity
8
temporal variation
8
population
6
establishment versus
4
versus population
4
population growth
4

Similar Publications

Alpha-1 antitrypsin (AAT) deficiency (AATD) is a monogenic disease caused by misfolding of AAT variants resulting in gain-of-toxic aggregation in the liver and loss of monomer activity in the lung leading to chronic obstructive pulmonary disease (COPD). Using high-throughput screening, we discovered a bioactive natural product, phenethyl isothiocyanate (PEITC), highly enriched in cruciferous vegetables, including watercress and broccoli, which improves the level of monomer secretion and neutrophil elastase (NE) inhibitory activity of AAT-Z through the endoplasmic reticulum (ER) redox sensor protein disulfide isomerase (PDI) A4 (PDIA4). The intracellular polymer burden of AAT-Z can be managed by combination treatment of PEITC and an autophagy activator.

View Article and Find Full Text PDF

Survival and cause-specific mortality rates are vital for evidence-based population forecasting and conservation, particularly for large carnivores, whose populations are often vulnerable to human-caused mortalities. It is therefore important to know the relationship between anthropogenic and natural mortality causes to evaluate whether they are additive or compensatory. Further, the relation between survival and environmental covariates could reveal whether specific landscape characteristics influence demographic performance.

View Article and Find Full Text PDF

Volcanic provinces are among the most active but least well understood landscapes on Earth. Here, we show that the central Cascade arc, USA, exhibits systematic spatial covariation of topography and hydrology that are linked to aging volcanic bedrock, suggesting systematic controls on landscape evolution. At the Cascade crest, a locus of Quaternary volcanism, water circulates deeply through the upper [Formula: see text]1 km of crust but transitions to shallow and dominantly horizontal flow as rocks age away from the arc front.

View Article and Find Full Text PDF

Machine learning (ML) methods continue to gain traction in hydrological sciences for predicting variables at large scales. Yet, the spatial transferability of these ML methods remains a critical yet underexamined aspect. We present a metamodel approach to obtain large-scale estimates of drain fraction at 10 m spatial resolution, using a ML algorithm (Gradient Boost Decision Tree).

View Article and Find Full Text PDF

Odours released by objects in natural environments can contain information about their spatial locations. In particular, the correlation of odour concentration timeseries produced by two spatially separated sources contains information about the distance between the sources. For example, mice are able to distinguish correlated and anti-correlated odour fluctuations at frequencies up to 40 Hz, while insect olfactory receptor neurons can resolve fluctuations exceeding 100 Hz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!