A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Injectable biocompatible poly(2-oxazoline) hydrogels by strain promoted alkyne-azide cycloaddition. | LitMetric

Poly(2-alkyl-2-oxazoline) (PAOx) hydrogels are tailorable synthetic materials with demonstrated biomedical applications, thanks to their excellent biocompatibility and tunable properties. However, their use as injectable hydrogels is challenging as it requires invasive surgical procedures to insert the formed hydrogel into the body due to their nonsoluble 3D network structures. Herein, we introduce cyclooctyne and azide functional side chains to poly(2-oxazoline) copolymers to induce in situ gelation using strain promoted alkyne-azide cycloaddition. The gelation occurs rapidly, within 5 min, under physiological conditions when two polymer solutions are simply mixed. The influence of several parameters, such as temperature and different aqueous solutions, and stoichiometric ratios between the two polymers on the structural properties of the resultant hydrogels have been investigated. The gel formation within tissue samples was verified by subcutaneous injection of the polymer solution into an ex vivo model. The degradation study of the hydrogels in vitro showed that the degradation rate was highly dependent on the type of media, ranging from days to a month. This result opens up the potential uses of PAOx hydrogels in attempts to achieve optimal, injectable drug delivery systems and tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1116/6.0000630DOI Listing

Publication Analysis

Top Keywords

strain promoted
8
promoted alkyne-azide
8
alkyne-azide cycloaddition
8
paox hydrogels
8
hydrogels
6
injectable biocompatible
4
biocompatible poly2-oxazoline
4
poly2-oxazoline hydrogels
4
hydrogels strain
4
cycloaddition poly2-alkyl-2-oxazoline
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!