Sensing Water Absorption in Hygrothermally Aged Epoxies with Terahertz Time-Domain Spectroscopy.

Anal Chem

Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom.

Published: February 2021

In the field of non-destructive testing, terahertz sensing has been used to analyze a wide range of materials where the most successful applications have involved materials that are semi-transparent to terahertz radiation. In this work, we demonstrate the sensitivity of terahertz time-domain spectroscopy to quantify water absorption in hygrothermally aged simple and commercial epoxy systems supported by conventional gravimetric analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880525PMC
http://dx.doi.org/10.1021/acs.analchem.0c04453DOI Listing

Publication Analysis

Top Keywords

water absorption
8
absorption hygrothermally
8
hygrothermally aged
8
terahertz time-domain
8
time-domain spectroscopy
8
sensing water
4
aged epoxies
4
terahertz
4
epoxies terahertz
4
spectroscopy field
4

Similar Publications

Edible coating (EC) can reduce excessive oil absorption in deep-fat fried food products. Ultrasound is an efficient pretreatment to preserve the quality characteristics of fried samples. The impact of guar gum based EC and sonication on the quality parameters of fried zucchini slices was investigated.

View Article and Find Full Text PDF

This study focuses on the composition and sources of dissolved organic matter (DOM) in the Fancun Reservoir, located in Ningguo City, Anhui Province, China. The investigation was conducted by analyzing the spectral characteristics of DOM using UV-Vis absorption spectra and fluorescence spectroscopy. The humic substances were dominated by fulvic acid, with an average DOM concentration of 30.

View Article and Find Full Text PDF

Affinity for OH Produces Four-Coordinated Zn Impurities in Hydrated Amorphous Calcium Carbonate.

Inorg Chem

January 2025

Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

Using ab initio based molecular dynamics and electronic structure calculations, we show that Zn impurities in hydrated amorphous calcium carbonate (ACC) have a much lower coordination number than other divalent impurities due to covalent interactions between the 3d Zn shell and the oxygen atoms of the carbonate and water groups. The local structure around Zn in ACC, including the predicted low coordination number, is confirmed by X-ray absorption spectroscopy of synthetic Zn-bearing ACC. The strong Zn-O chemical interaction leads to substantial water dissociation and slightly disrupts the hydrogen bonding network.

View Article and Find Full Text PDF

Ultrasound-Assisted Extraction of Chickpea Proteins and Their Functional and Technological Properties.

Food Technol Biotechnol

December 2024

TÜBİTAK MAM, Climate and Life Sciences, Food Technology Research Group, Barış Mah. Dr. Zeki Acar Cad. No:1 P.K. 21, 41470Gebze Kocaeli, Türkiye.

Research Background: Chickpea is a very good source of protein for the development of protein-enriched plant-based ingredients. Chickpea protein isolates are primarily obtained by wet extraction methods such as alkaline or salt extraction. The energy input required for the production of chickpea protein isolates can have an impact on both the environment and processing, thus affecting nutritional quality and human health.

View Article and Find Full Text PDF

This study aimed to prepare films using Xyloglucan (Xylo) and tea extract (TE) to treat aphthous stomatitis without causing discomfort. Xylo, which gelates by adding polyphenol, was used as a gelation agent, and TE, which contains epigallocatechin-3-gallate (EGCG) with antioxidant properties, was used as an active pharmaceutical agent. Two kinds of films, hydrogel and xerogel films, were prepared by mixing various amounts of Xylo and TE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!