The development of crack patterns is a serious problem affecting the durability of orthopedic implants and the prognosis of patients. This issue has gained considerable attention in the medical community in recent years. This literature focuses on the five primary aspects relevant to the evaluation of the surface cracking patterns, i.e., inappropriate use, design flaws, inconsistent elastic modulus, allergic reaction, poor compatibility, and anti-corrosiveness. The hope is that increased understanding will open doors to optimize fabrication for biomedical applications. The latest technological issues and potential capabilities of implants that combine absorbable materials and shape memory alloys are also discussed. This article will act as a roadmap to be employed in the realm of orthopedic. Fatigue crack growth and the challenges associated with materials must be recognized to help make new implant technologies viable for wider clinical adoption. This review presents a summary of recent findings on the fatigue mechanisms and fracture of implant in the initial period after surgery. We propose solutions to common problems. The recognition of essential complications and technical problems related to various approaches and material choices while satisfying clinical requirements is crucial. Additional investigation will be needed to surmount these challenges and reduce the likelihood of fatigue crack growth after implantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795221PMC
http://dx.doi.org/10.3390/ma14010176DOI Listing

Publication Analysis

Top Keywords

fatigue crack
12
crack growth
12
fatigue
4
growth fracture
4
fracture internal
4
internal fixation
4
fixation materials
4
materials vivo
4
vivo environments-a
4
environments-a review
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!