More recently, there has been a paradigm shift toward selective drug targeting in the treatment of neurological disorders, including drug addiction, schizophrenia, and Parkinson's disease mediated by the different dopamine receptor subtypes. Antagonists with higher selectivity for D dopamine receptor (D3DR) over D dopamine receptor (D2DR) have been shown to attenuate drug-seeking behavior and associated side effects compared to non-subtype selective antagonists. However, high conservations among constituent residues of both proteins, particularly at the ligand-binding pockets, remain a challenge to therapeutic drug design. Recent studies have reported the discovery of two small-molecules R-VK4-40 and Y-QA31 which substantially inhibited D3DR with >180-fold selectivity over D2DR. Therefore, in this study, we seek to provide molecular and structural insights into these differential binding mechanistic using meta-analytic computational simulation methods. Findings revealed that R-VK4-40 and Y-QA31 adopted shallow binding modes and were more surface-exposed at D3DR while on the contrary, they exhibited deep hydrophobic pocket binding at D2DR. Also, two non-conserved residues; Tyr36 and Ser182 were identified in D3DR, based on their crucial roles and contributions to the selective binding of R-VK4-40 and Y-QA31. Importantly, both antagonists exhibited high affinities in complex with D3DR compared to D2DR, while van der Waals energies contributed majorly to their binding and stability. Structural analyses also revealed the distinct stabilizing effects of both compounds on D3DR secondary architecture relative to D2DR. Therefore, findings herein pinpointed the origin and mechanistic of selectivity of the compounds, which may assist in the rational design of potential small molecules of the D -like dopamine family receptor subtype with improved potency and selectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmr.2885DOI Listing

Publication Analysis

Top Keywords

dopamine receptor
20
r-vk4-40 y-qa31
12
binding mechanistic
8
binding
6
dopamine
6
receptor
6
d3dr
6
d2dr
5
exploring structural
4
structural basis
4

Similar Publications

Introduction: Adjunctive therapies to treat OFF episodes resulting from long-term levodopa treatment in Parkinson disease (PD) are hampered by safety and tolerability issues. Istradefylline offers an alternative mechanism (adenosine A2A receptor antagonist) and therefore potentially improved tolerability.

Methods: A systematic review of PD adjuncts published in 2011 was updated to include randomized controlled trials published from January 1, 2010-April 15, 2019.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a complex developmental disorder characterized by several behavioral impairments, especially in socialization, communication, and the occurrence of stereotyped behaviors. In rats, prenatal exposure to valproic acid (VPA) induces autistic-like behaviors. Previous studies by our group have suggested that the autistic-like phenotype is possibly related to dopaminergic system modulation because tyrosine hydroxylase (TH) expression was affected.

View Article and Find Full Text PDF

The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.

View Article and Find Full Text PDF

Dopaminergic system gains importance in homeostatic sleep regulation, but the role of different dopamine receptors is not well-defined. 72 h rat electrocorticogram and sleep recordings were made after single application of dopaminergic drugs in clinical use or at least underwent clinical trials. The non-selective agonist apomorphine evoked short pharmacological sleep deprivation with intense wakefulness followed by pronounced sleep rebound.

View Article and Find Full Text PDF

Introduction: Droperidol is a dopamine-2 receptor antagonist in the class of butyrophenone antipsychotics with antiemetic, sedative, analgesic, and anxiolytic properties. In the postoperative setting, droperidol provides an opioid sparing effect and decreases nausea/vomiting. Another butyrophenone antipsychotic, haloperidol, has been shown to reduce morphine milliequivalents (MME) administered when used for abdominal pain in the emergency department (ED).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!