Heterogeneous solid catalysis by the commercially available perfluorosulfonic ionomer Aquivion-H allowed 1,2:5,6-diacetonide of d-mannitol (1), immediate precursor of important unichiral C3-synthons, to be efficiently obtained from d-mannitol and 2,2-dimethoxypropane in DMF at room temperature. The 1,2-monoacetonide, whose intermediate formation is the rate-limiting step, could be almost completely converted into 1 with limited concurrent transformation of 1 into triacetonides. In line with recent literature reports, these results indicate that heterogeneous catalysis by Aquivion-H surpasses the performances of homogeneous acidic catalysis assuring, presumably for its peculiar morphology, a higher product selectivity. Easy recovery at the end of the reaction and recyclability are additional advantages of this solid acid catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carres.2020.108229DOI Listing

Publication Analysis

Top Keywords

efficient conversion
4
conversion d-mannitol
4
d-mannitol 1256-diacetonide
4
1256-diacetonide aquivion-h
4
aquivion-h recyclable
4
recyclable catalyst
4
catalyst heterogeneous
4
heterogeneous solid
4
solid catalysis
4
catalysis commercially
4

Similar Publications

Photocatalytic reduction of nitrate to N holds great significance for environmental governance. However, the selectivity of nitrate reduction to N is influenced by sacrificial agents and the kinds of cocatalysts (such as Pt and Ag). The presence of unconsumed sacrificial agents can aggravate environmental pollution, while noble metal-based cocatalysts increase application costs.

View Article and Find Full Text PDF

Super-Resolved Mapping of Electrochemical Reactivity in Single 3D Catalysts.

Nano Lett

January 2025

Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China.

Crystals with three-dimensional (3D) stereoscopic structures, characterized by diverse shapes, crystallographic planes, and morphologies, represent a significant advancement in catalysis. Differentiating and quantifying the catalytic activity of specific surface facets and sites at the single-particle level is essential for understanding and predicting catalytic performance. This study employs super-resolution radial fluctuations electrogenerated chemiluminescence microscopy (SRRF-ECLM) to achieve high-resolution mapping of electrocatalytic activity on individual 3D CuO crystals, including cubic, octahedral, and truncated octahedral structures.

View Article and Find Full Text PDF

Bioenergetic trade-offs can reveal the path to superior microbial CO fixation pathways.

mSystems

January 2025

Department of Chemical and P. Engineering, Research and Innovation Centre on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.

A comprehensive optimization of known prokaryotic autotrophic carbon dioxide (CO) fixation pathways is presented that evaluates all their possible variants under different environmental conditions. This was achieved through a computational methodology recently developed that considers the trade-offs between energy efficiency (yield) and growth rate, allowing us to evaluate candidate metabolic modifications for microbial conversions. The results revealed the superior configurations in terms of both yield (efficiency) and rate (driving force).

View Article and Find Full Text PDF

The prominence of binuclear catalysts underlines the need for the design and development of diverse bifunctional ligand frameworks that exhibit tunable electronic and structural properties. Such strategies enable metal-metal and ligand-metal cooperation towards catalytic applications, improve catalytic activity, and are essential for advancing multi-electron transfers for catalytic application. Hereby, we present the synthesis, crystal structure, and photocatalytic properties of a binuclear Ni(II) complex, [Ni2(1,10-phenanthroline)2(2-sulfidophenolate)2] (1), which crystallizes in the centrosymmetric triclinic system (P-1) showing extensive intra- and inter- non-coordinated interactions.

View Article and Find Full Text PDF

Direct photochemical conversion of CO2 into a single carbon-based product currently represents one of the major issues in the catalysis of the CO2 reduction reaction (CO2RR). In this work, we demonstrate that the combination of an organic photosensitizer with a heptacoordinated iron(II) complex allows to attain a noble-metal-free photochemical system capable of efficient and selective conversion of CO2 into CO upon light irradiation in the presence of N,N-diisopropylethylamine (DIPEA) and 2,2,2-trifluoroethanol (TFE) as the electron and proton donor, respectively, with unprecedented performances (ΦCO up to 36%, TONCO > 1000, selectivity > 99%). As shown by transient absorption spectroscopy studies, this can be achieved thanks to the fast rates associated with the electron transfer from the photogenerated reduced dye to the catalyst, which protect the dye from parallel degradation pathways ensuring its stability along the photochemical reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!