Osteoarthritis (OA) is a heterogeneous disease that is consistently difficult to treat due to the complexity of the regulatory network involved in OA pathogenesis, especially in terms of cartilage degeneration. As a C-2 epimer of glucose, d-mannose can alleviate bone loss and repress immunopathology by upregulating regulatory T cells; however, the role of d-mannose in OA-related cartilage degeneration remains unknown. In this study, we investigated the chondroprotective effect of d-mannose in vitro and in vivo on OA. We found that incubating interleukin (IL)-1β-treated rat chondrocytes with d-mannose restrained OA degeneration by elevating cell proliferation, strongly activating autophagy, reducing apoptosis, and downregulating catabolism. Additionally, oral gavage administration of d-mannose to monosodium iodoacetate (MIA)-treated rats revealed that a median (1.25 g/kg/day) rather than high or low dose of d-mannose suppressed OA progression and attenuated OA development based on lower macroscopic scores for cartilage, decreased histological scores for cartilage and synovium, strongly activated autophagy, and downregulated catabolism. In terms of a downstream mechanism, we showed that d-mannose might attenuate OA degeneration by activating autophagy in IL-1β-treated rat chondrocytes by promoting the phosphorylation of 5' AMP-activated protein kinase (AMPK). Our in vitro findings revealed that d-mannose delayed IL-1β-induced OA degeneration in rat chondrocytes by enhancing autophagy activation through the AMPK pathway. Furthermore, the in vivo results indicated that a median dose of d-mannose suppressed MIA-induced OA development. These results suggested that d-mannose exhibits chondroprotective effects and represents a potential disease-modifying drug and novel therapeutic agent for OA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2020.111199 | DOI Listing |
Sci Rep
January 2025
Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative disease that causes chronic pain and joint dysfunction. However, the current understanding of TMJOA pathogenesis is limited and necessitates further research. Animal models are crucial for investigating TMJOA due to the scarcity of clinical samples.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
Osteoarthritis (OA) is a degenerative joint disease that affects the cartilage and surrounding tissues. The transcription factor Kruppel-like family factor 9 (KLF9) has been identified as a regulator of tumorigenesis. However, its role in OA is still not fully understood.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of PLA, Kunming, China.
Osteoarthritis (OA) is a degenerative bone disease characterized by the destruction of joint cartilage and synovial inflammation, involving intricate immune regulation processes. Disulfidptosis, a novel form of programmed cell death, has recently been identified; however, the effects and roles of disulfidptosis-related genes (DR-DEGs) in OA remain unclear. We obtained six OA datasets from the GEO database, using four as training sets and two as validation sets.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
Objective: Nuclear transcription factor-κB (NF-κB) activation is a pivotal event in the pathogenesis of osteoarthritis (OA). OA patients frequently exhibit vitamin D (VD) deficiency, which is commonly associated with NF-κB activation. Our study aimed to investigate whether VD could protect against OA by modulating NF-κB pathway and to explore the underlying mechanisms.
View Article and Find Full Text PDFNutrients
December 2024
Department of Biochemistry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan.
Background: Osteoarthritis (OA) is a chronic condition characterized by joint pain and disability, driven by excessive oxidative stress and inflammatory cytokine production in chondrocytes, resulting in cell death and cartilage matrix breakdown. Our previous study showed that in monosodium iodoacetate (MIA)-induced OA rats, oral administration of heat-killed subsp. 557 (LDL557) could significantly decrease OA progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!