Towards a tractography-based risk stratification model for language area associated gliomas.

Neuroimage Clin

Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany.

Published: June 2021

AI Article Synopsis

  • The study focused on the impact of surgical injury to major white matter pathways on language function in patients undergoing glioma surgery.
  • It involved 50 patients and utilized advanced imaging techniques to analyze and predict language outcomes based on the condition of five key language tracts.
  • Findings showed that damage to specific brain areas significantly increased the risk of persistent language issues post-surgery, indicating that preoperative tractography can help assess aphasia risks for individual patients.

Article Abstract

Objectives: Injury to major white matter pathways during language-area associated glioma surgery often leads to permanent loss of neurological function. The aim was to establish standardized tractography of language pathways as a predictor of language outcome in clinical neurosurgery.

Methods: We prospectively analyzed 50 surgical cases of patients with left perisylvian, diffuse gliomas. Standardized preoperative Diffusion-Tensor-Imaging (DTI)-based tractography of the 5 main language tracts (Arcuate Fasciculus [AF], Frontal Aslant Tract [FAT], Inferior Fronto-Occipital Fasciculus [IFOF], Inferior Longitudinal Fasciculus [ILF], Uncinate Fasciculus [UF]) and spatial analysis of tumor and tracts was performed. Postoperative imaging and the resulting resection map were analyzed for potential surgical injury of tracts. The language status was assessed preoperatively, postoperatively and after 3 months using the Aachen Aphasia Test and Berlin Aphasia Score. Correlation analyses, two-step cluster analysis and binary logistic regression were used to analyze associations of tractography results with language outcome after surgery.

Results: In 14 out of 50 patients (28%), new aphasic symptoms were detected 3 months after surgery. The preoperative infiltration of the AF was associated with functional worsening (cc = 0.314; p = 0.019). Cluster analysis of tract injury profiles revealed two areas particularly related to aphasia: the temporo-parieto-occipital junction (TPO; temporo-parietal AF, middle IFOF, middle ILF) and the temporal stem/peri-insular white matter (middle IFOF, anterior ILF, temporal UF, temporal AF). Injury to these areas (TPO: OR: 23.04; CI: 4.11 - 129.06; temporal stem: OR: 21.96; CI: 2.93 - 164.41) was associated with a higher-risk of persisting aphasia.

Conclusions: Tractography of language pathways can help to determine the individual aphasia risk profile pre-surgically. The TPO and temporal stem/peri-insular white matter were confirmed as functional nodes particularly sensitive to surgical injuries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7785953PMC
http://dx.doi.org/10.1016/j.nicl.2020.102541DOI Listing

Publication Analysis

Top Keywords

white matter
12
tractography language
12
language pathways
8
language outcome
8
cluster analysis
8
middle ifof
8
ilf temporal
8
temporal stem/peri-insular
8
stem/peri-insular white
8
language
7

Similar Publications

Dynamic X-ray Microtomography vs. Laser-Doppler Vibrometry: A Comparative Study.

J Assoc Res Otolaryngol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, Bern University Hospital, University of Bern, 3010, Freiburgstrasse, Bern, Switzerland.

Purpose: There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV).

Methods: We examined three fresh-frozen temporal bones (TB), two donated by white males and one by a Black female, using dynamic synchrotron-based X-ray microtomography for 256 and 512 Hz, stimulated at 110 dB and 120 dB sound pressure level (SPL).

View Article and Find Full Text PDF

Genetic analyses identify circulating genes related to brain structures associated with Parkinson's disease.

NPJ Parkinsons Dis

January 2025

Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China.

Magnetic resonance imaging and circulating molecular testing are potential methods for diagnosing and treating Parkinson's disease (PD). However, their relationships remain insufficiently studied. Using genome-wide association summary statistics, we found in the general population a genetic negative correlation between white matter tract mean diffusivity and PD (-0.

View Article and Find Full Text PDF

Static and dynamic connectivity structure of white-matter functional networks across the adult lifespan.

Prog Neuropsychopharmacol Biol Psychiatry

January 2025

MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, PR China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, PR China. Electronic address:

Aging of the human brain involves intricate biological processes, resulting in complex changes in structure and function. While the effects of aging on gray matter (GM) connectivity are extensively studied, white matter (WM) functional changes have received comparatively less attention. This study examines age-related WM functional dynamics using resting-state fMRI across the adult lifespan.

View Article and Find Full Text PDF

Characterizing the Microstructural Transition at the Gray Matter-White Matter Interface: Implementation and Demonstration of Age-Associated Differences.

Neuroimage

January 2025

Department of Radiology, Columbia University Irving Medical Center, New York, NY; Department of Biomedical Engineering, Columbia University, New York, NY. Electronic address:

Background: The cortical gray matter-white matter interface (GWI) is a natural transition zone where the composition of brain tissue abruptly changes and is a location for pathologic change in brain disorders. While diffusion magnetic resonance imaging (dMRI) is a reliable and well-established technique to characterize brain microstructure, the GWI is difficult to assess with dMRI due to partial volume effects and is normally excluded from such studies.

Methods: In this study, we introduce an approach to characterize the dMRI microstructural profile across the GWI and to assess the sharpness of the microstructural transition from cortical gray matter (GM) to white matter (WM).

View Article and Find Full Text PDF

Objective: This study aimed to explore the relationship between the Systemic Inflammatory Response Index (SIRI) and Cerebral Small Vessel Disease (CSVD), focusing on its key imaging markers.

Methods: We enrolled 344 patients admitted to the neurology department between January 2022 and September 2024, comprising 223 patients diagnosed with CSVD and 121 without CSVD. Baseline characteristics were compared between groups, and multivariate logistic regression was performed to assess the impact of SIRI on CSVD risk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!