A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of methods to estimate microcystins removal and water treatment resiliency using mechanistic risk modelling. | LitMetric

Development of methods to estimate microcystins removal and water treatment resiliency using mechanistic risk modelling.

Water Res

Southern California Coastal Water Research Project, Department of Microbiology, 3535 Harbor Blvd. Suite 110, Costa Mesa, CA 92626, USA.

Published: February 2021

AI Article Synopsis

  • Drinking water treatment processes can remove harmful toxins from algae blooms, but utilities often react to these events rather than prepare in advance due to cost constraints.
  • This study adapted a quantitative microbial risk analysis (QMRA) to create a method for proactive responses to harmful algal blooms, using the 2014 Toledo water crisis as a case study that can apply to other water systems.
  • The research emphasizes the importance of modeling toxin status and using specific treatments to minimize health risks, highlighting a need for effective strategies in light of increasing water quality challenges due to climate change.*

Article Abstract

Drinking water treatment processes are capable of removing microcystins but consistent operation of processes optimized for cyanobacterial harmful algal bloom (cHAB) conditions is not fiscally feasible. Therefore, utilities must ready themselves and start the cHAB processes as a reactionary response. Predictive analytics and modelling are impactful tools to prepare water systems for cHABs, but are still in early stages of development. Until those prospective models are completed, a method to determine best actions in advance of a bloom event thus improving system resiliency is needed. In this study, an adaptation of the quantitative microbial risk analysis (QMRA) methodology was applied to develop this method. This method and resulting models were developed around the Toledo (Ohio, USA) water crisis of 2014, but being mechanistic, they are easily adaptable to other systems' process operations data. Results from this internally validated model demonstrate how rapid action using both powdered activated carbon and measured increases in chlorine dose can mitigate health risks. Our research also demonstrates the importance of modelling the cellular status of the toxins (toxins either in an intact cell or in the water from a lysed cell). Risks were characterized using hazard quotients (HQ) and at the peak of the crisis ranged from a minimum of 0.00244 to a maximum of 2.84 for adults. In simulations where cHAB-specific treatment was used this decreased to 0.00057 and 0.236 respectively. We further outline how this methodology can be used to simulate water system resiliency to likely and aberrant microbial hazard events to plan for the best interventions to protect public health. This method can be used for other hazards expected to be variable in the future, where system prepatory planning is critical to continued public health protection. Considering the water quantity and quality fluctuations occurring and likely to intensify under climate change, this type of computationally supported preparedness is vital to maintaining robust water system resiliency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2020.116763DOI Listing

Publication Analysis

Top Keywords

system resiliency
12
water
8
water treatment
8
water system
8
public health
8
development methods
4
methods estimate
4
estimate microcystins
4
microcystins removal
4
removal water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!