C1q/tumor necrosis factor-related protein-6 (CTRP6) is a newly identified adipokine involved in diverse biological processes. However, its role in salivary glands remains unknown. Here, we demonstrated that CTRP6 was mainly distributed in the nuclei, apicolateral membranes, and cytoplasm of human submandibular glands (SMGs), serous cells of parotid glands, and ducts and apicolateral membranes of serous cells in rats and mice. CTRP6 inhibited the apoptosis rate and reversed the increased levels of cleaved caspase 3, caspase 8, caspase 9, and cytochrome C and the decreased Bcl-2 expression induced by tumor necrosis factor (TNF)-α in both SMG-C6 cells and cultured human SMG tissues. Microarray analysis identified 43 differentially expressed microRNAs (miRNAs) in the SMGs of nonobese diabetic mice. miR-34a-5p was selected due to its upregulation by TNF-α, which was abolished by CTRP6. The miR-34a-5p inhibitor promoted whereas the miR-34a-5p mimic suppressed the effects of CTRP6 on TNF-α-induced apoptosis. CTRP6 increased AMP-activated protein kinase (AMPK) phosphorylation and reversed TNF-α-induced SIRT1 downregulation in salivary cells. AraA, an AMPK inhibitor, reversed the effects of CTRP6 on TNF-α-induced alterations in the levels of SIRT1, miR-34a-5p, Bcl-2, and cleaved caspase 3 in vitro and ex vivo, whereas activating AMPK by AICAR reversed the decrease in SIRT1 expression and increase in miR-34a-5p expression induced by TNF-α. Inhibition of SIRT1 by EX527 suppressed the effects of CTRP6 on TNF-α-induced changes in miR-34a-5p and apoptosis-related proteins. Our findings indicate that salivary glands are novel sites for CTRP6 synthesis and secretion. CTRP6 protects acinar cells against TNF-α-induced apoptosis via AMPK/SIRT1-modulated miR-34a-5p expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.30262 | DOI Listing |
This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.
View Article and Find Full Text PDFViruses
December 2024
Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan.
Numerous host factors function as intrinsic antiviral effectors to attenuate viral replication. MARCH8 is an E3 ubiquitin ligase that has been identified as a host restriction factor that inhibits the replication of various viruses. This study elucidated the mechanism by which MARCH8 restricts respiratory syncytial virus (RSV) replication through selective degradation of the viral small hydrophobic (SH) protein.
View Article and Find Full Text PDFViruses
December 2024
Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India.
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis.
View Article and Find Full Text PDFViruses
December 2024
Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.
View Article and Find Full Text PDFViruses
November 2024
Laboratorio de Virología, Centro de Microbiología Básica y Aplicada (CEMIBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata CP 1900, Buenos Aires, Argentina.
, commonly named Canine distemper virus (CDV), is a morbillivirus implicated in several signs in the family. In dogs (), common signs of infection include conjunctivitis, digital hyperkeratosis and neuropathologies. Even with vaccination, the canine distemper disease persists worldwide so the molecular pathways implicated in the infection processes have been an interesting and promising area in new therapeutic drugs research in recent years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!