Protein-protein interactions (PPIs) play vital roles in regulating biological processes, such as cellular and signaling pathways. Hotspots are certain residues located at protein-protein interfaces that contribute more in protein-protein binding than other residues. Research on the mutational effects of hotspots is important for understanding basic aspects of protein association. Hence, various computational tools have been developed to explore the impact of mutation hotspots, which will allow a better understanding of the forces that drive PPIs. However, tools that may provide comprehensive substitutions at hotspots are still rare. Hence, there is a strong need for a new free web server to explore mutational effects of hotspots. Herein we introduce a web server named PIIMS that integrates molecular dynamics simulation and one-step free energy perturbation. It contains two main computational functions: (1) computational alanine scanning analysis to identify hotspots and (2) full mutation scanning analysis to evaluate the effects of hotspot mutations. We rigidly validated its ability to predict binding free energy changes by using large and diverse datasets including 1,341 mutations from 50 PPIs with the correlation coefficient = 0.75. The difference from the existing tools is that PIIMS can perform further evaluation of hotspot residues with regard to their different mutations. The PIIMS web server (accessible at http://chemyang.ccnu.edu.cn/ccb/server/PIIMS/index.php) is free and open to all users without login requirements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.0c00966 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!