Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Solid-state lithium batteries have been intensively studied as part of research activities to develop energy storage systems with high safety and stability characteristics. Despite the advantages of solid-state lithium batteries, their application is currently limited by poor reversible capacity arising from their high resistance. In this study, we significantly improve the reversible capacity of solid-state lithium batteries by lowering the resistance through the introduction of a graphene and wrinkle structure on the surface of the copper (Cu) current collector. This is achieved through a process of chemical vapor deposition (CVD) facilitating graphene-growth synthesis. The modified graphene/wrinkled Cu current collector exhibits a periodic wrinkled pattern 420 nm in width and 22 nm in depth, and we apply it to a graphite composite electrode to obtain an improved areal loading average value of ∼2.5 mg cm. The surface-modified Cu current collector is associated with a significant increase in discharge capacity of 347 mAh g at 0.2 C when used with a solid polymer electrolyte. Peel test results show that the observed enhancement is due to the improved strength of adhesion occurring between the graphite composite anode and the Cu current collector, which is attributed to mechanical interlocking. The surface-modified Cu current collector structure effectively reduces resistance by improving adhesion, which subsequently improves the performance of the solid-state lithium batteries. Our study can provide perspective and emphasize the importance of electrode design in achieving enhancements in battery performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c04769 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!