Nitrogen, sulfur, phosphorus, and chlorine co-doped carbon nanodots (NSPCl-CNDs) were fabricated by acid-base neutralization and exothermic carbonization of glucose. The obtained NSPCl-CNDs possess excellent fluorescence properties and good biocompatibility. Curcumin (Cur) can dramatically quench the fluorescence of NSPCl-CNDs based on a synergistic effect of electrostatic interaction, inner filter effect, and static quenching, so a "turn-off" fluorescent probe for Cur detection was constructed with linear ranges of 0.24-13.16 μM and 13.62-57.79 μM. The LOD and LOQ of this fluorescent probe for Cur are 8.71 nM and 29.03 nM, respectively. More importantly, the fluorescence of the NSPCl-CNDs-Cur system can be recovered by europium ion (Eu), so a "turn-on" fluorescent probe for Eu determination was established. The linear range, LOD, and LOQ for the detection of Eu were 2.36-32.91 μΜ, 73.29 nM, and 244.30 nM, respectively. The proposed fluorescence methods were successfully utilized for Cur and Eu determination in real samples with recoveries in the range 95.64-104.13% and 97.06-98.70%, respectively. Furthermore, the qualitative analysis of Cur can be realized by reagent strips with satisfying results. Finally, the as-constructed "off-on" fluorescent probe was successfully used to sequentially analyze Cur and Eu at the cellular level. This method is simple and easy to implement, manifesting that NSPCl-CNDs have potential application value in fluorescent probing, food and drug testing, environmental monitoring, and cellular labeling. Graphical abstract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-020-04618-8 | DOI Listing |
Nat Commun
December 2024
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.
Early disease diagnosis hinges on the sensitive detection of signaling molecules. Among these, hydrogen sulfide (HS) has emerged as a critical player in cardiovascular and nervous system signaling. On-chip immunoassays, particularly nanoarray-based interfacial detection, offer promising avenues for ultra-sensitive analysis due to their confined reaction volumes and precise signal localization.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Cancer Nanomedicine Lab, Department of Zoology, Periyar University, Salem, TN, India.
We designed a new cyanide sensing probe by one-step synthesis and evaluated it using UV-vis and fluorescent techniques. The active moiety of (Z)-3-(4-(methylthio) phenyl)-2-(4-nitrophenyl) acrylonitrile (NCS) demonstrated fluorescence. The probe NCS showed turn-off fluorescence in the presence of cyanide (CN¯), which has a higher selectivity and sensitivity than other anions.
View Article and Find Full Text PDFTalanta
December 2024
Key Laboratory of Public Health Safety of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, School of Public Health, Hebei University, Baoding, 071002, PR China.
Human serum albumin (HSA) levels in serum and urine is a crucial biomarker for diagnosing liver and kidney diseases. HSA is used to treat various disorders in clinical practice and as an excipient in the production of vaccine or protein drug, ensuring its purity essential for patient safety. However, selective and sensitive detection of HSA remains challenging due to its structural similarity with bovine serum albumin (BSA) and the inherent complexity of biological matrices.
View Article and Find Full Text PDFJACS Au
December 2024
Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken D-66123, Germany.
is a critical priority pathogen and causes life-threatening acute and biofilm-associated chronic infections. The choice of suitable treatment for complicated infections requires lengthy culturing for species identification from swabs or an invasive biopsy. To date, no fast, pathogen-specific diagnostic tools for infections are available.
View Article and Find Full Text PDFBio Protoc
December 2024
Division of Life Science, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, Japan.
Zebrafish and medaka are valuable model vertebrates for genetic studies. The advent of CRISPR-Cas9 technology has greatly enhanced our capability to produce specific gene mutants in zebrafish and medaka. Analyzing the phenotypes of these mutants is essential for elucidating gene function, though such analyses often yield unexpected results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!