Transition metals are thought to be among the most toxic components in atmospheric particulate matter (PM) due to their role in catalyzing reactive oxygen species (ROS) formation. We show that precipitation of the transition metals Fe(ii), Fe(iii), and Mn(ii) are thermodynamically favored in phosphate-based assays used to measure the oxidative potential (OP) - a surrogate for toxicity - of PM. Fe and Mn precipitation is likely to occur at extremely low metal concentrations (<0.5 μM), levels that are imperceptible to the naked eye. The concentration of each metal (other than Cu) in aqueous PM filter extracts often exceeds the solubility limit in OP assays, indicating favorable thermodynamic conditions for precipitation. Macroscopic experimental results at higher metal concentrations (>100 μM) with visible precipitates provide quasi-validation of the thermodynamic modeling. Oxidation of Fe(ii) to Fe(iii) is likely to be rapid in all in vitro OP assays, transforming Fe to a much less soluble form. Fe precipitates are likely to increase the rate of precipitation of other metals and possibly induce co-precipitation. These results have direct relevance for all PO4-based assays; the implications for studies of PM toxicity are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0em00405g | DOI Listing |
PLoS One
January 2025
Ocean Georesources Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea.
Banded iron formations (BIFs), significant iron ore deposits formed approximately 2.3 billion years ago under low-oxygen conditions, have recently gained attention as potential geological sources for evaluating hydrogen (H₂) production. BIFs are characterized by high concentrations of iron oxide (20 to 40 wt.
View Article and Find Full Text PDFInorg Chem
January 2025
Heterogeneous Catalysis, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim 45470, Germany.
Reductive phosphatization is an original synthesis approach to the formation of transition metal phosphates (TMPs). The approach enables the synthesis of known TMPs, but also new compounds, especially with transition metals in a low-valent state. However, to exploit the enormous potential of this synthesis method, it is necessary to identify and characterize all of the potential intermediates and final synthesis products.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Center for High-Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao, 066004, China.
Oxygen usually exists in the form of diatomic molecules at ambient conditions. At high pressure, it undergoes a series of phase transitions from diatomic O to O cluster and ultimately dissociates into a polymeric O spiral chain structure. Intriguingly, the commonly found cyclic hexameric molecules in other group VIA elements (e.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
Bioassays and Cellular Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil.
Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses.
View Article and Find Full Text PDFCell Biochem Funct
January 2025
Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India.
The biosynthesis of silver nanoparticles (AgNPs) using cyanobacteria has gained significant attention due to its cost-effective and eco-friendly advantages in green synthesis. Additionally, biogenic AgNPs show great potential for biological applications, particularly in combating infections caused by drug-resistant bacteria and fungi. This study synthesized using the cyanobacterium Oscillatoria salina (Os-AgNPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!