Hydroxypyromorphite (HPM) is a low-solubility Pb phosphate mineral that has the potential to limit solubility and bioavailability of Pb in soils and water. Because of reported uncertainty regarding the solubility product of this important mineral, we re-evaluated the solubility of Pb and activity of the free Pb2+ ion in aqueous suspensions of microcrystalline HPM equilibrated up to 30 days over a wide range of added soluble phosphate. A small addition of phosphate (0.1 mM) reduced Pb solubility as measured by ICP-OES, but greater phosphate additions (up to 50 mM) had no further effect in lowering HPM solubility. However, free Pb2+ ion activity measured by ion-selective electrode progressively decreased from about 10-6.5 with no added phosphate to 10-9 as soluble phosphate was increased. The effect of soluble phosphate in lowering Pb2+ activity is attributed to inhibited dissolution of HPM as well as increased Pb2+-phosphate ion pair formation in solution at higher solution concentrations of phosphate. Measurement of the ion activity products (IAP) of the solutions at equilibrium with HPM gave highly variable IAP values that were sensitive to pH and were generally not consistent with the reported solubility product of this mineral. The high variability of the IAPs for solutions with variable pH and phosphate concentrations indicates that dissolution-precipitation reactions of HPM are not described by a constant solubility product at equilibrium, possibly because of the incongruent dissolution behavior of this mineral at near-neutral pH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0em00430h | DOI Listing |
Sci Rep
January 2025
Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Three composites based on Poly (meta-aminophenol) (PmAP), (3-aminopropyl) triethoxysilane (APTES) and graphene oxide (GO) were synthesized with initial GO dispersion of 3.3, 6.6, and 9.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States. Electronic address:
For monoclonal antibody drug products as for other biologics, while the innovator drug products first becomes commercially available, they are often followed by one or more biosimilar products. These biosimilars often differ from the innovator product, as well as from each other, in their formulation composition. However, the impact of the formulation composition on the stability of the active pharmaceutical ingredient subjected to different 'stresses' is still not understood.
View Article and Find Full Text PDFLangmuir
January 2025
The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin RD, Shanghai 200234, China.
Ascorbyl tetraisopalmitate (VC-IP) is a novel form of ascorbic acid characterized by reduced water solubility due to complete acylation with palmitate. This study investigated the potential cosmetic application of VC-IP when encapsulated in lyotropic liquid crystal nanoparticles (VC-IP LCNPs) by using a high-pressure homogenization (HPH) method. The particle size, zeta potential, and polydispersity index (PDI) of the obtained VC-IP LCNPs were determined as 158.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, P. R. China.
In the current work, lychee pulp was subjected to ATCC 14917 fermentation, leading to a substantial increase (2.32-2.67-fold) in water-soluble polysaccharides (WSP).
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
February 2025
Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium.
Lithium-sulfur batteries are a promising candidate for the next generation of rechargeable batteries. Despite extensive research on this system over the last decade, a complete understanding of the phase transformations has remained elusive. Conventional in-situ powder X-ray diffraction has struggled to determine the unit cell and space group of the polysulfides formed during charge and discharge cycles due to the high solubility of these solid products in the liquid electrolyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!