The endoplasmic reticulum (ER) is the site of protein folding and secretion, Ca storage and lipid synthesis in eukaryotic cells. Disruption to protein folding or Ca homeostasis in the ER leads to the accumulation of unfolded proteins, a condition known as ER stress. This leads to activation of the unfolded protein response (UPR) pathway in order to restore protein homeostasis. Three ER membrane proteins, namely inositol-requiring enzyme 1 (IRE1), protein kinase RNA-like ER kinase (PERK) and activating transcription factor 6 (ATF6), sense the accumulation of unfolded/misfolded proteins and are activated, initiating an integrated transcriptional programme. Recent literature demonstrates that activation of these sensors can alter lipid enzymes, thus implicating the UPR in the regulation of lipid metabolism. Given the presence of ER stress and UPR activation in several diseases including cancer and neurodegenerative diseases, as well as the growing recognition of altered lipid metabolism in disease, it is timely to consider the role of the UPR in the regulation of lipid metabolism. This review provides an overview of the current knowledge on the impact of the three arms of the UPR on the synthesis, function and regulation of fatty acids, triglycerides, phospholipids and cholesterol.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7875919 | PMC |
http://dx.doi.org/10.1111/jcmm.16255 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.
Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-776 Warsaw, Poland.
Background: This study investigated the selenium-binding capacity of the biomass of two yeast strains, American Type Culture Collection (ATCC) 7090 and CCY 20-2-26.
Methods: The studies carried out methods of bioaccumulation by yeast biomass. Inorganic selenium was added to the culture media as an aqueous solution of NaSeO at concentrations ranging from 0 to 40 mg Se/L.
Front Biosci (Landmark Ed)
January 2025
Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.
Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.
Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.
Front Biosci (Landmark Ed)
January 2025
The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!