Formation and weathering assessment of oil-suspended sediment aggregates through a laboratory investigation.

Environ Sci Pollut Res Int

Environmental Science Center, Qatar University, P.O Box: 2713, Doha, Qatar.

Published: April 2021

AI Article Synopsis

  • OSAs (oil-suspended sediment aggregates) play a key role in natural cleaning processes in the marine environment, and their formation was studied across various mixing conditions and oil-sediment ratios.
  • The study found that the size of OSAs increased significantly with added sediments, and they were effective in depleting harmful n-alkanes and polycyclic aromatic hydrocarbons (PAHs), with the highest depletion occurring after 10 hours of continuous mixing.
  • Despite their potential to aid in cleaning, the presence of high concentrations of PAHs (over 5000 ng/g) in the OSAs poses significant carcinogenic risks to the marine ecosystem.

Article Abstract

Formation of oil-suspended sediment aggregates (OSAs) is believed to be one of the natural cleaning processes in the marine environment. In this study, we have investigated the formation processes of OSAs under different mixing periods (continuous mixing and with the addition of sediments in between), oil-sediment ratios (1:1, 1:2 and 2:1) and crude oils (Arabian Light (AL), Kuwait (KW) and Murban (MB)). The results revealed that size of OSAs significantly increased (up to ≈ 1.41 mm) with the addition of sediments. Aggregates (total 36) were extracted for n-alkanes and polycyclic aromatic hydrocarbons to quantify and assess their weathering and toxic levels. The maximum n-alkane depletion was 84% (111-02), 94% (212-02) and 84% (321-02) and PAH depletion was ≈ 72% (111-02), 79% (212-02) and 81% (311-03) for the OSAs of AL, KW and MB crude oils, respectively, for the different samples considered, indicating that n-alkanes were depleted relatively higher than the PAHs. The highest depletion of both n-alkane and PAHs has occurred in OSAs of 10-h continuous mixing. The depletion of both n-alkane and PAHs reduced after the addition of sediments, however, escalated the growth of OSAs, resulting in bigger size OSAs. The concentration of PAHs of all 36 OSAs is greater than 5000 ng/g, indicating very high PAH pollution. Though the formation of OSAs helps in cleaning the spill sites, the carcinogenic threat to the marine ecosystem caused by these OSAs cannot be ignored.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-11813-wDOI Listing

Publication Analysis

Top Keywords

addition sediments
12
osas
10
oil-suspended sediment
8
sediment aggregates
8
continuous mixing
8
crude oils
8
size osas
8
depletion n-alkane
8
n-alkane pahs
8
formation
4

Similar Publications

Environmental fate and aquatic risk assessment of oxyfluorfen in California rice fields.

Integr Environ Assess Manag

January 2025

Department of Environmental Toxicology, College of Agricultural and Environmental Sciences, University of California, Davis, CA, United States.

The herbicide oxyfluorfen [OXY; 2-chloro-1-(3-ethoxy-4-nitrophenoxy)-4-(trifluoromethyl)benzene] recently emerged as a potential solution to combat herbicide resistance in California rice. Proposed as a preemergent applied preflood to soil, products are in development for use with OXY-tolerant rice strains. Currently, OXY is not registered for use with rice and its use in or near aquatic resources is restricted due to its high aquatic toxicity.

View Article and Find Full Text PDF

Retrospective datasets offer essential context for conservation by revealing species' ecological roles before industrial-era human impacts. We analysed isotopic compositions of pre-industrial and modern sea otters () to reconstruct pre-extirpation ecology and offer insights for management. Our study focuses on southeast Alaska (SEAK), where sea otters are recolonizing, and northern Oregon, where translocations are being considered.

View Article and Find Full Text PDF

The ecology of watersheds plays an important role in regulating regional climate and human activities. The sediment-soil system in the middle and lower reaches of the Yellow River Basin (Henan section) was explored. The spatial distribution characteristics of heavy metals (HMs) showed that tributaries, which are affected by anthropogenic activities, contain higher concentrations of HMs than the main channel.

View Article and Find Full Text PDF

Assessment of potential ecological risk by metals in Ilha Grande Bay (Southeast Brazil).

Mar Pollut Bull

January 2025

Universidade de Aveiro, GeoBioTec, Departamento de Geociências, Campus de Santiago, 3810-193 Aveiro, Portugal. Electronic address:

This study evaluates contamination and potential ecological risk in Ilha Grande Bay (BIG) in southeastern Brazil. To achieve these objectives, we analyzed physicochemical, sediment textural, and geochemical data from 134 stations distributed throughout the bay. The results reveal significant environmental degradation in the coastal areas of Paraty, Saco do Mamanguá, Angra dos Reis City, and Abraão Cove (at Ilha Grande island).

View Article and Find Full Text PDF

Metagenomic insights into efficiency and mechanism of antibiotic resistome reduction by electronic mediators-enhanced microbial electrochemical system.

J Hazard Mater

January 2025

Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China. Electronic address:

Electronic mediators are an effective means of enhancing the efficiency of microbial electrochemical electron transfer; however, there are still gaps in understanding the strengthening mechanisms and the efficiency of removing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). This study systematically elucidates the effects of various electron mediators on bioelectrochemical processes, electron transfer efficiency, and the underlying mechanisms that inhibit ARG propagation within sediment microbial fuel cell systems (SMFCs). The results indicate that the addition of electron mediators significantly increased the output voltage (33.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!