A simple, efficient, environmentally friendly, and inexpensive synthesis route was developed to obtain a magnetic nano-hybrid (GH) based on graphene and cobalt ferrite. Water with a high content of natural organic matter (NOM) was used as solvent and a source of carbon. The presence of NOM in the composition of GH was confirmed by FTIR and Raman spectroscopy, which evidenced the formation of graphene, as also corroborated by XRD analyses. The diffractograms and TEM images showed the formation of a hybrid nanomaterial composed of graphene and cobalt ferrite, with crystallite and particle sizes of 0.83 and 4.0 nm, respectively. The heterogeneous electro-Fenton process (EF-GH) achieved 100% degradation of bisphenol A (BPA) in 50 min, with 80% mineralization in 7 h, at pH 7, using a current density of 33.3 mA cm. The high catalytic performance was achieved at neutral pH, enabling substantial reduction of the costs of treatment processes. This work contributes to understanding the role of NOM in the synthesis of a magnetic nano-hybrid based on graphene and cobalt ferrite, for use in heterogeneous catalysis. This nano-hybrid has excellent potential for application in the degradation of persistent organic pollutants found in aquatic environments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-11913-7DOI Listing

Publication Analysis

Top Keywords

graphene cobalt
12
cobalt ferrite
12
heterogeneous electro-fenton
8
electro-fenton process
8
degradation bisphenol
8
magnetic nano-hybrid
8
nano-hybrid based
8
based graphene
8
process degradation
4
bisphenol graphene/cobalt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!