This study is an attempt to assess pulmonary protective and antifibrotic potentials of a combination of aspirin, a widely used anti-inflammatory and cardioprotective agent, and krill oil, a naturally occurring omega-3 fatty acid source, against silica-induced pulmonary injury. For silicosis induction, silica particles (50 mg/rat, 0.1 mL 0.9% NaCl) were instilled intranasally into rats. Aspirin (10 mg/kg/day), krill oil (40 mg/kg/day), or their combination was administered orally for 56 days following silica exposure. Results showed that oral aspirin and krill oil combination significantly mitigated silica-induced pulmonary injury. Bronchoalveolar lavage fluid examination showed a decreased lactate dehydrogenase activity, total protein content, and accumulation of total and differential inflammatory cells. Oral aspirin and krill oil combination significantly attenuated silica-induced oxidative stress through the restoration of reduced glutathione concentration and catalase activity in addition to alleviation of elevated malondialdehyde and total nitric oxide contents. Moreover, aspirin and krill oil combination revealed considerable mitigation of silica-induced upregulated expression of the inflammatory and fibrotic mediators: nuclear factor kappa-B, transforming growth factor-β1, and matrix metalloproteinase-9. The antifibrotic effect was also evidenced through the decreased hydroxyproline content and the obvious restoration of lung architecture, as demonstrated upon histopathological examination. In conclusion, oral aspirin and krill oil combination can confer pulmonary protective, anti-inflammatory, and antifibrotic potentials against silica-induced pulmonary injury. This impact could be credited to the ability of this combination to activate resolution mechanisms, which, in turn, suppress the expression of inflammatory and fibrotic biomarkers and replenish antioxidant stores.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-020-11921-7 | DOI Listing |
Food Chem
January 2025
School of Food Science and Engineering, Hainan University, Haikou 570228, China.
Due to the fact that association colloids were formed in krill oil, the oxidation mechanism of krill oil was more complicated. In this study, water-soluble ferrous sulfate (Fe(SO)), oil-soluble ferrous fumarate (CHFeO) and insoluble ferric oxide (FeO) were added to krill oil and stored at 60 °C for accelerated oxidation. Peroxide value, thiobarbituric acid reactive substances and aldehyde content showed that Fe(SO) had a stronger pro-oxidative effect.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Sericultural and Agrifood Res Inst, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China.
The objective of this study was to prepare a microcapsule system composed of the inner microenvironment (probiotics), middle oil layer (soybean oil and polyglycerol polyricinoleate) and outer coacervate (whey protein and gum arabic) using double emulsification technique coupled with complex coacervation to encapsulate probiotics, and to evaluate the effect of adding krill oil (KO) to the middle oil layer on microcapsule structure and probiotic stability. The results of Fourier transform infrared spectroscopy and Scanning electron microscopy confirmed that whey protein may capture phospholipids in KO through hydrogen bonds, resulting in the formation of a more compact coacervate. Due to the compact coacervate enhanced the vapor transport barrier and reduced water evaporation during low-temperature dehydration, probiotics encapsulated in KO-supplemented microcapsules revealed less cell damage and a higher survival rate after freeze-drying.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China. Electronic address:
Arsenic is a pervasive environmental pollutant that can bioaccumulate in Antarctic krill through the food chain, posing potential risks to human health. This study investigates the toxic effects of arsenic in Antarctic krill oil (AKO) on Caco-2 cells, focusing on oxidative stress and apoptosis induction. AKO is nutrient-rich and contains various arsenic species, including arsenite (As³⁺), arsenate (As⁵⁺), dimethyl arsinic acid (DMA), and arsenobetaine (AsB), each exhibiting different toxic potencies.
View Article and Find Full Text PDFFoods
December 2024
Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 47521 Cesena, Italy.
Zooplankton such as copepods and krill are currently used to produce marine oil supplements, with the aim of helping consumers achieve the recommended intake of n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs). Oils from lower trophic levels differ from fish oil in the distribution of lipids into different classes, and this can influence the bioaccessibility of fatty acids, i.e.
View Article and Find Full Text PDFFoods
December 2024
State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
In this study, silver carp surimi products enriched with Antarctic krill oil high internal phase emulsions (AKO-HIPEs) were cooked using steaming (STE), microwave heating (MIC), and air-frying (AIR), respectively. The gel and flavor properties, lipid quality and stability were investigated. Compared to the MIC and AIR groups, the STE surimi gel added with HIPEs had better texture properties, exhibiting higher water-holding capacity and a more homogeneous structure, while the air-frying treatment resulted in visually brighter surimi products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!