Brain 4 (Brn4) is a transcription factor belonging to the POU3 family, and it is important for the embryonic development of the neural tube, inner ear and pancreas. In addition, it serves a crucial role in neural stem cell differentiation and reprogramming. The present review aimed to summarize the chromosomal location, species homology, protein molecular structure and tissue distribution of Brn4, in addition to its biological processes, with the aim of providing a reference of its structure and function for further studies, and its potential use as a gene therapy target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809911 | PMC |
http://dx.doi.org/10.3892/mmr.2020.11818 | DOI Listing |
Microb Cell Fact
January 2025
Human Microbiology Institute, New York, NY, 10014, USA.
Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.
Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China.
Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.
View Article and Find Full Text PDFEMBO Rep
January 2025
Rudolf Buchheim Institute of Pharmacology, Justus Liebig University, Giessen, Germany.
The protein interactome of p65/RELA, the most active subunit of the transcription factor (TF) NF-κB, has not been previously determined in living cells. Using p65-miniTurbo fusion proteins and biotin tagging, we identify >350 RELA interactors from untreated and IL-1α-stimulated cells, including many TFs (47% of all interactors) and >50 epigenetic regulators belonging to different classes of chromatin remodeling complexes. A comparison with the interactomes of two point mutants of p65 reveals that the interactions primarily require intact dimerization rather than DNA-binding properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!