Granular materials are often encountered in science and engineering disciplines, in which controlling the particle contacts is one of the critical issues for the design, engineering, and utilization of their desired properties. The achievable rapid fabrication of nanoparticles with tunable physical and chemical properties facilitates tailoring the macroscopic properties of particle assemblies through contacts at the nanoscale. Models have been developed to predict the mechanical properties of macroscopic granular materials; however, their predicted power in the case of nanoparticle assemblies is still uncertain. Here, we investigate the influence of nanocontacts on the elasticity and thermal conductivity of a granular fiber comprised of close-packed silica nanoparticles. A complete elastic moduli characterization was realized by non-contact and non-destructive Brillouin light spectroscopy, which also allowed resolving the stiffness of the constituent particles in situ. In the framework of effective medium models, the strong enhancement of the elastic moduli is attributed to the formation of adhesive nanocontacts with physical and/or chemical bondings. The nanoparticle contacts are also responsible for the increase in the fiber thermal conductivity that emphasizes the role of interface thermal resistance, which tends to be ignored in most porosity models. This insight into the fundamental understanding of structure-property relationships advances knowledge on the manipulation of granular systems at the nanoscale.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp05377eDOI Listing

Publication Analysis

Top Keywords

thermal conductivity
12
elasticity thermal
8
granular materials
8
elastic moduli
8
surface contacts
4
contacts influence
4
influence elasticity
4
thermal
4
conductivity silica
4
silica nanoparticle
4

Similar Publications

The increasing power and integration of electronic devices have intensified serious heat accumulation, driving the demand for higher intrinsic thermal conductivity in thermal interface materials, such as polydimethylsiloxane (PDMS). Grafting mesogens onto PDMS can enhance its intrinsic thermal conductivity. However, the high stability of the PDMS chain limits the grafting density of mesogens, restricting the improvement in thermal conductivity.

View Article and Find Full Text PDF

Modification at ITO/NiO Interface with MoS Enables Hole Transport for Efficient and Stable Inverted Perovskite Solar Cells.

ChemSusChem

January 2025

Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China.

Inverted perovskite solar cells (IPSCs) utilizing nickel oxide (NiO) as hole transport material have made great progress, driven by improvements in materials and interface engineering. However, challenges remain due to the low intrinsic conductivity of NiO and inefficient hole transport. In this study, we introduced MoS nanoparticles at the indium tin oxide (ITO) /NiO interface to enhance the ITO surface and optimize the deposition of NiO, resulting in increased conductivity linked to a ratio of Ni:Ni.

View Article and Find Full Text PDF

Ammonium perchlorate (AP) is widely utilized in aerospace, defense and other fields due to its high energy density, exceptional stability, easy availability and adaptability. However, the high sensitivity and hygroscopicity of AP severely constrain its application in numerous fields. In this study, a two-step continuous coating method was employed to construct AP-based energetic microcapsules with low sensitivity and hygroscopicity.

View Article and Find Full Text PDF

To improve the stability of D-limonene, a protective barrier is essential to prevent degradation and maintain its integrity. Therefore, the potential of using seed gum (LPSG) as a novel source for creating electrospun nanofibers for D-limonene encapsulation was investigated by varying LPSG concentrations (0.25%, 0.

View Article and Find Full Text PDF

Since the initial publication on the first TiCT MXene in 2011, there has been a significant increase in the number of reports on applications of MXenes in various domains. MXenes have emerged as highly promising materials for various biomedical applications, including photothermal therapy (PTT), drug delivery, diagnostic imaging, and biosensing, owing to their fascinating conductivity, mechanical strength, biocompatibility and hydrophilicity. Through surface modification, MXenes can mitigate cytotoxicity, enhance biological stability, and improve histocompatibility, thereby enabling their potential use in biomedical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!