Whether it be physical, biological or social processes, complex systems exhibit dynamics that are exceedingly difficult to understand or predict from underlying principles. Here we report a striking correspondence between the excitation dynamics of a laser driven gas of Rydberg atoms and the spreading of diseases, which in turn opens up a controllable platform for studying non-equilibrium dynamics on complex networks. The competition between facilitated excitation and spontaneous decay results in sub-exponential growth of the excitation number, which is empirically observed in real epidemics. Based on this we develop a quantitative microscopic susceptible-infected-susceptible model which links the growth and final excitation density to the dynamics of an emergent heterogeneous network and rare active region effects associated to an extended Griffiths phase. This provides physical insights into the nature of non-equilibrium criticality in driven many-body systems and the mechanisms leading to non-universal power-laws in the dynamics of complex systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7782709 | PMC |
http://dx.doi.org/10.1038/s41467-020-20333-7 | DOI Listing |
JAMA Netw Open
January 2025
Department of Surgery, University of Washington, Seattle.
Importance: Timely access to care is a key metric for health care systems and is particularly important in conditions that acutely worsen with delays in care, including surgical emergencies. However, the association between travel time to emergency care and risk for complex presentation is poorly understood.
Objective: To evaluate the impact of travel time on disease complexity at presentation among people with emergency general surgery conditions and to evaluate whether travel time was associated with clinical outcomes and measures of increased health resource utilization.
Soft Robot
January 2025
Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
Soft robots and bioinspired systems have revolutionized robot design by incorporating flexibility and deformable materials inspired by nature's ingenious designs. Similar to many robotic applications, sensing and perception are paramount to enable soft robots to adeptly navigate the unpredictable real world, ensuring safe interactions with both humans and the environment. Despite recent progress, soft robot sensorization still faces significant challenges due to the virtual infinite degrees of freedom of the system and the need for efficient computational models capable of estimating valuable information from sensor data.
View Article and Find Full Text PDFInorg Chem
January 2025
Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
In this study, we apply TD-DFT and DFT calculations to explore the mechanistic details of O evolution in an artificial system that closely resembles Photosystem II (PSII). The reaction involves mononuclear Mn(III) complex [Mn(salpd)(OH)] and -benzoquinone under light-driven conditions. Our calculations reveal that the Schiff-base ligand salpd plays a crucial role in several key steps of the reaction, including the light-mediated oxidation of [Mn(salpd)(OH)] to [Mn(salpd)(OH)] by -benzoquinone, the subsequent oxidation of [Mn(salpd)(OH)] to the key Mn(V) intermediate [Mn(salpd)(O)], and the critical O-O bond formation step.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
Milk is a multifaceted biofluid that is essential for infant nutrition and development, yet its cellular and bioactive components, particularly maternal milk cells, remain understudied. Early research on milk cells indicated that they cross the infant's intestinal barrier and accumulate within systemic organs. However, due to the absence of modern analytical techniques, these studies were limited in scope and mechanistic analysis.
View Article and Find Full Text PDFHealth Promot Int
January 2025
Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2, Singapore, 117549,Singapore.
This is a state-of-the-art review of historical developments, current approaches and recommended future directions in physical activity (PA) research, practice and policy. Since the early epidemiological studies in the 1950s, PA research has developed from within a biomedical paradigm. There is now a strong evidence base linking PA with positive health outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!