Alkenones are biomarkers produced solely by algae in the order Isochrysidales that have been used to reconstruct sea surface temperature (SST) since the 1980s. However, alkenone-based SST reconstructions in the northern high latitude oceans show significant bias towards warmer temperatures in core-tops, diverge from other SST proxies in down core records, and are often accompanied by anomalously high relative abundance of the C tetra-unsaturated methyl alkenone (%C). Elevated %C is widely interpreted as an indicator of low sea surface salinity from polar water masses, but its biological source has thus far remained elusive. Here we identify a lineage of Isochrysidales that is responsible for elevated C methyl alkenone in the northern high latitude oceans through next-generation sequencing and lab-culture experiments. This Isochrysidales lineage co-occurs widely with sea ice in marine environments and is distinct from other known marine alkenone-producers, namely Emiliania huxleyi and Gephyrocapsa oceanica. More importantly, the %C in seawater filtered particulate organic matter and surface sediments is significantly correlated with annual mean sea ice concentrations. In sediment cores from the Svalbard region, the %C concentration aligns with the Greenland temperature record and other qualitative regional sea ice records spanning the past 14 kyrs, reflecting sea ice concentrations quantitatively. Our findings imply that %C is a powerful proxy for reconstructing sea ice conditions in the high latitude oceans on thousand- and, potentially, on million-year timescales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7782803 | PMC |
http://dx.doi.org/10.1038/s41467-020-20187-z | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, WA 98105.
The Atlantic Meridional Overturning Circulation (AMOC) is a key component of the global climate that is projected to weaken under future anthropogenic climate change. While many studies have investigated the AMOC's response to different levels and types of forcing in climate models, relatively little attention has been paid to the AMOC's sensitivity to the rate of forcing change, despite it also being highly uncertain in future emissions scenarios. In this study, I isolate the AMOC's response to different rates of CO increase in a state-of-the-art global climate model and find that the AMOC undergoes more severe weakening under faster rates of CO change, even when the magnitude of CO change is the same.
View Article and Find Full Text PDFPolar Biol
December 2024
Department of Geography, Durham University, South Road, Durham, DH1 3LE UK.
Knowledge of the spatial distribution of many polar seabird species is incomplete due to the remoteness of their breeding locations. Here, we compiled a new database of published and unpublished records of all known snow petrel breeding sites. We quantified local environmental conditions at sites by appending indices of climate and substrate, and regional-scale conditions by appending 30 year mean (1992-2021) sea-ice conditions within accessible foraging areas.
View Article and Find Full Text PDFSci Data
December 2024
University of Oslo, Department of Geosciences, Oslo, 0313, Norway.
Sea ice is a key element of the global Earth system, with a major impact on global climate and regional weather. Unfortunately, accurate sea ice modeling is challenging due to the diversity and complexity of underlying physics happening there, and a relative lack of ground truth observations. This is especially true for the Marginal Ice Zone (MIZ), which is the area where sea ice is affected by incoming ocean waves.
View Article and Find Full Text PDFSci Data
December 2024
Center for Coastal and Ocean Mapping, University of New Hampshire, Durham, NH, USA.
Knowledge about seafloor depth, or bathymetry, is crucial for various marine activities, including scientific research, offshore industry, safety of navigation, and ocean exploration. Mapping the central Arctic Ocean is challenging due to the presence of perennial sea ice, which limits data collection to icebreakers, submarines, and drifting ice stations. The International Bathymetric Chart of the Arctic Ocean (IBCAO) was initiated in 1997 with the goal of updating the Arctic Ocean bathymetric portrayal.
View Article and Find Full Text PDFSci Total Environ
December 2024
Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, HGF-MPG Joint Research Group for Deep-Sea Ecology and Technology, Am Handelshafen 12, 27570 Bremerhaven, Germany.
Microplastic (MP) pollution has reached the remotest areas of the globe, including the polar regions. In the Arctic Ocean, MPs have been detected in ice, snow, water, sediment, and biota, but their temporal dynamics remain poorly understood. To better understand the transport pathways and drivers of MP pollution in this fragile environment, this study aims to assess MPs (≥ 11 μm) in sediment trap samples collected at the HAUSGARTEN observatory (Fram Strait) from September 2019 to July 2021.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!