This study investigated the effects of cofactor metabolism on secondary metabolite production in M. purpureus through the application of different cofactor engineering strategies. Total pigment production dramatically increased by 39.08% and 40.89%, and yellow pigment production increased by 74.62% and 114.06% after the addition of 1.0 mg/L of the exogenous cofactor reagents methyl viologen and rotenone, respectively, in submerged batch-fermentation. The extracellular red pigment tone changed to yellow with the application of electrolytic stimulation at 800 mV/cm, but almost no citrinin production was detected. In addition, the total pigment, yellow pigment and citrinin production increased by 35.46%, 54.89% and 6.27% after disruption of the nuoⅠ gene that encodes NADH-quinone oxidoreductase, respectively. Thus, cofactor metabolic engineering strategies could be extended to the industrial production of Monascus pigment or high yellow pigment with free citrinin production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fm.2020.103689 | DOI Listing |
Cancer Cell Int
December 2024
Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.
View Article and Find Full Text PDFJ Neuroeng Rehabil
December 2024
Chair of Autonomous Systems and Mechatronics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
Wearable robots are often powered by elastic actuators, which can mimic the intrinsic compliance observed in human joints, contributing to safe and seamless interaction. However, due to their increased complexity, when compared to direct drives, elastic actuators are susceptible to faults, which pose significant challenges, potentially compromising user experience and safety during interaction. In this article, we developed a fault-tolerant control strategy for torque assistance in a knee exoskeleton and investigated user experience during a walking task while emulating faults.
View Article and Find Full Text PDFBMC Public Health
December 2024
Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, Unity Health Toronto, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.
Background: Machine learning (ML) is increasingly used in population and public health to support epidemiological studies, surveillance, and evaluation. Our objective was to conduct a scoping review to identify studies that use ML in population health, with a focus on its use in non-communicable diseases (NCDs). We also examine potential algorithmic biases in model design, training, and implementation, as well as efforts to mitigate these biases.
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Department of Medicine, McMaster University, Hamilton, ON, Canada.
Background: To compare the effectiveness of four surveillance strategies for detecting SARS-CoV-2 within the homeless shelter population in Hamilton, ON and assess participant adherence over time for each surveillance method.
Methods: This was an open-label, cluster-randomized controlled trial conducted in eleven homeless shelters in Hamilton, Ontario, from April 2020 to January 2021. All participants who consented to the study and participated in the surveillance were eligible for testing by self-swabbing.
Trends Biotechnol
December 2024
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA. Electronic address:
Immune system functions play crucial roles in both health and disease, and these functions are regulated by their metabolic programming. The field of immune engineering has emerged to develop therapeutic strategies, including polymeric nanoparticles (NPs), that can direct immune cell phenotype and function by directing immunometabolic changes. Precise control of bioenergetic processes may offer the opportunity to prevent undesired immune activity and improve disease-specific outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!