A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and optimization of a loop-mediated isothermal amplification (LAMP) assay for the species-specific detection of Penicillium expansum. | LitMetric

Development and optimization of a loop-mediated isothermal amplification (LAMP) assay for the species-specific detection of Penicillium expansum.

Food Microbiol

Technical University of Munich, TUM School of Life Sciences, Chair of Technical Microbiology, Gregor-Mendel-Str. 4, 85354, Freising, Germany. Electronic address:

Published: May 2021

Penicillium expansum is the main cause of Blue Mold Decay, which is the economically most significant postharvest disease on fruits. It occurs especially on pomaceous fruits such as apples and pears but also on a wide range of other fruits such as grapes or strawberries. Besides its negative economic effects on the industry, the fungus is also of health concern as it produces patulin, a mycotoxin known to provoke harmful effects in humans. A specific and rapid detection of this fungus therefore is required. In the current study, a loop-mediated isothermal amplification (LAMP) assay was developed and optimized for the species-specific detection of P. expansum. The assay showed high specificity during tests with genomic DNA of 187 fungal strains. The detection limit of the developed assay was 25 pg genomic DNA of P. expansum per reaction. The assay was successfully applied for the detection of the fungus on artificially contaminated apples, grapes, apple juice, apple puree, and grape juice. The developed assay is a promising tool for rapid, sensitive, specific, and cost-efficient detection of P. expansum in quality control applications in the food and beverage industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2020.103681DOI Listing

Publication Analysis

Top Keywords

loop-mediated isothermal
8
isothermal amplification
8
amplification lamp
8
lamp assay
8
species-specific detection
8
penicillium expansum
8
detection fungus
8
detection expansum
8
genomic dna
8
developed assay
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!