Generation of Systemic Lupus Erythematosus Patient-Derived Induced Pluripotent Stem Cells from Blood.

Stem Cells Dev

Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.

Published: March 2021

Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease characterized by the production of multiple autoimmune antibodies and potentially involves any organ or tissue with a broad range of clinical manifestations. Conventional therapy still utilizes glucocorticoids and immunosuppressants. However, some patients show inadequate responses to glucocorticoids and immunosuppression, which may induce secondary immune dysfunction and severe infection as well as lead to an increased tumor risk. The lack of in vitro models has hampered progress in understanding and treating SLE. Patient-derived induced pluripotent stem cells (iPSCs) may provide a unique opportunity for modeling in vitro diseases as well as a platform for drug screening in individual patients. We isolated peripheral blood mononuclear cells from blood to explore the establishment of an in vitro model platform for SLE and directly purified CD34+ cells and seeded them for expansion. CD34+ cells were forced to express seven pluripotency factors, OCT4, SOX2, NANOG, LIN28, c-MYC, KLF4, and SV40LT, through transduction in lentiviral vectors. The morphological characteristics of induced pluripotent stem-like cells, such as prominent nucleoli and a high nucleus-to-cytoplasm ratio, were observed. The pluripotency of established SLE patient-derived iPSCs was confirmed by the expression of embryonic stem cell (ESC) markers and the ability of cells to differentiate into multiple cell lines. SLE patient-derived iPSCs exhibited human ESC properties, including morphology; growth characteristics; expression of pluripotency, genes, and surface markers; and teratoma formation. In conclusion, we generated SLE patient-derived iPSCs and validated their pluripotency. This study is a first but critical step that can provide a model platform for research aimed at understanding the SLE mechanism, which may lead to the discovery of new targets or compounds for the treatment of this disease.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2020.0194DOI Listing

Publication Analysis

Top Keywords

sle patient-derived
16
induced pluripotent
12
patient-derived ipscs
12
systemic lupus
8
lupus erythematosus
8
patient-derived induced
8
pluripotent stem
8
stem cells
8
cells blood
8
model platform
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!