Polymeric systems made of poly(lactic acid) or poly(lactic-co-glycolic acid) are widely used for long-term delivery of small and large molecules. The advantages of poly(lactic acid)/poly(lactic-co-glycolic acid) systems include biodegradability, safety and a long history of use in US FDA-approved products. However, as drugs delivered by the polymeric systems and their applications become more diverse, the significance of microenvironment change of degrading systems on long-term drug stability and release kinetics has gained renewed attention. In this review, we discuss various issues experienced with acidifying microenvironment of biodegradable polymer systems and approaches to overcome the detrimental effects of polymer degradation on drug stability and release control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4155/tde-2020-0113 | DOI Listing |
Vaccines (Basel)
December 2024
Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), Beijing 102629, China.
Influenza poses a significant global health challenge due to its rapid mutation and antigenic variability, which often leads to seasonal epidemics and frequent outbreaks. Traditional vaccines struggle to offer comprehensive protection because of mismatches with circulating viral strains. The development of a broad-spectrum vaccine is therefore crucial.
View Article and Find Full Text PDFVaccines (Basel)
December 2024
National Institutes for Food and Drug Control, No. 31, Huatuo Road, Beijing 102629, China.
Background: The Vero cell rabies vaccine is currently the most widely used human rabies vaccine. However, owing to the presence of residual host cell DNA (HCD) in the final product and the potential tumorigenicity of the DNA of high-passage Vero cells, the WHO not only sets a limit on the number of times cells used in production can be passaged, but also imposes strict requirements on the amount of residual HCD in the final vaccine product.
Objectives: To systematically reduce the HCD level in the final vaccine product, multiple purification steps are included in the vaccine production process.
Sensors (Basel)
December 2024
Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, H-1083 Budapest, Hungary.
The aim of this work is to incorporate lanthanide-cored upconversion nanoparticles (UCNP) into the surface of microengineered biomedical implants to create a spatially controlled and optically releasable model drug delivery device in an integrated fashion. Our approach enables silicone-based microelectrocorticography (ECoG) implants holding platinum/iridium recording sites to serve as a stable host of UCNPs. Nanoparticles excitable in the near-infrared (lower energy) regime and emitting visible (higher energy) light are utilized in a study.
View Article and Find Full Text PDFPharmaceutics
December 2024
M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
: Antimicrobial peptides are generally considered promising drug candidates for combating resistant bacterial infections. However, the selectivity of their action may vary significantly. Natural gomesin, isolated from haemocytes of the tarantula , demonstrates a broad spectrum of antimicrobial activities, being the most effective against pathogenic fungi.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
: This study aims to broaden the knowledge on co-amorphous phospholipid systems (CAPSs) by exploring the formation of CAPSs with a broader range of poorly water-soluble drugs, celecoxib (CCX), furosemide (FUR), nilotinib (NIL), and ritonavir (RIT), combined with amphiphilic phospholipids (PLs), including soybean phosphatidylcholine (SPC), hydrogenated phosphatidylcholine (HPC), and mono-acyl phosphatidylcholine (MAPC). : The CAPSs were initially prepared at equimolar drug-to-phospholipid (PL) ratios by mechano-chemical activation-based, melt-based, and solvent-based preparation methods, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!