Controllable synthesis of novel metal nanoparticles and effective capture of hotspots are of great significance for SERS (surface-enhanced Raman spectroscopy) detection. Therefore, in this paper, a green controllable synthesis method of gold nanoparticle was achieved via epigallocatechin gallate reduction. Different morphologies of gold nanoparticles were synthesized just by changing the solution pH values, and the growth kinetics of AuNPs (gold nanoparticles) were systematically studied. The synthetic AuNPs were put in a droplet to study dynamic variations of self-assembly SERS hotspots from the liquid sol state to the solid dry state. The addition of halogen ions in the droplet can controllably regulate the self-assembly three-dimensional hotspot model of gold nanoparticles in the evaporation process of a droplet, during which the most enhancement effect can be easily captured. The dynamically changing images of nanoparticles in the process were graphically described based on the internal interaction forces of a droplet. Two stronger areas in the changes of SERS intensity were achieved with a high concentration of halogen ions, while only one maximum intensity area was obtained with a low concentration of halogen ions added. This method can effectively avoid complex and unpredictable microenvironments of SERS substrates in the liquid drop, further improving the reproducibility of SERS detection as well as broadening it to biological applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c03323 | DOI Listing |
Plant Cell Rep
January 2025
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 4 Pasteur Street, 400349, Cluj-Napoca, Romania.
A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Institute for Advanced Study (IAS), College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China. Electronic address:
Background: Alzheimer's disease (AD) is a neurodegenerative disorder with a very long duration, posing a serious threat to people's life and health. To date, no medicine that can cure or reverse the disease has been developed or reported, so early diagnosis and timely intervention are essential. The concentration of Phosphorylated tau181 (P-tau181) in blood has been approved by FDA as a standard for assisting clinical diagnosis of AD.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China. Electronic address:
Background: Plasmonic core-shell nanostructures with embedded internal markers used as Raman probes have attracted great attention in surface-enhanced Raman scattering (SERS) immunoassay for cancer biomarkers due to their excellent uniform enhancement. However, current core-shell nanostructures typically exhibit a spherical shape and are coated with a gold shell, resulting in constrained local field enhancement.
Results: In this work, we prepared a core-shell AuNR@BDT@Ag structure by depositing silver on the surface of Raman reporter-modified gold nanorods (AuNR).
Anal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:
Background: Estriol (E3) is a common estrogen responsible for regulating the female reproductive system, but excessive amount can pose health risks to humans and wild life. Therefore, sensitive and accurate detection of estriol level is crucial. A novel competitive ECL immunosensor based on a dual signal amplification strategy of AuNPs@GO@SmMoSe and Gd(MoO) was fabricated for ultrasensitive detection of estriol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!