Capacitive Pressure Sensors Containing Reliefs on Solution-Processable Hydrogel Electrodes.

ACS Appl Mater Interfaces

Shaanxi Key Laboratory of Photoelectric Functional Materials and Devices, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, P. R. China.

Published: January 2021

Highly sensitive capacitive-type pressure sensor has been achieved by fabricating reliefs on solution-processable hydrogel electrodes. Hybrid PVA/PANI hydrogels (PVA, poly(vinyl alcohol); PANI, polyaniline) with a fully physically cross-linked binary network are selected as the electrodes of the pressure sensors. On the basis of the solution processability, reliefs are fabricated on the surface of PVA/PANI hydrogel electrodes by a template method. The gauge factor (GF) is enhanced by introducing reliefs and regulated by controlling the composition and relief dimension of hydrogel electrodes. The optimized pressure sensor containing reliefs achieves the highest GF of 7.70 kPa and a sensing range of 0-7.4 kPa. Furthermore, the freezing and drying problems of the hydrogel sensors are overcome by introducing a binary solvent of water/glycerol and the pressure sensing ability at -18 °C has been achieved. Finally, monitoring of various pressures in daily life, such as joint bending, blowing, and brush writing, is demonstrated using such pressure sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c18355DOI Listing

Publication Analysis

Top Keywords

hydrogel electrodes
16
pressure sensors
12
reliefs solution-processable
8
solution-processable hydrogel
8
pressure sensor
8
reliefs
5
hydrogel
5
electrodes
5
pressure
5
capacitive pressure
4

Similar Publications

Au nanoparticles anchored carbonized ZIF-8 for enabling real-time and noninvasive glucose monitoring in sweat.

Biosens Bioelectron

January 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, 213164, Changzhou, China. Electronic address:

Wearable sensors can easily enable real-time and noninvasive glucose (Glu) monitoring, providing vital information for effectively preventing various complications caused by high glucose level. Here, a wearable sensor based on nanozyme-catalyzed cascade reactions is designed for Glu monitoring in sweat. Au nanoparticles (AuNPs) are anchored to the carbonated zeolitic imidazolate framework-8 (ZIF-8-C), endowing the sensor with Glu oxidase (GOx)-like and peroxidase (POD)-like activity.

View Article and Find Full Text PDF

Recently, implantable devices for treating peripheral nerve disorders have demonstrated significant potential as neuroprosthetics for diagnostics and electrical stimulation. However, the mechanical mismatch between these devices and nerves frequently results in tissue damage and performance degradation. Although advances are made in stretchable electrodes, challenges, including complex patterning techniques and unstable performance, persist.

View Article and Find Full Text PDF

This study explores improving proton exchange membrane water electrolysis (PEMWE) by achieving both cost-effectiveness and enhanced efficiency through the replacement of the costly and environmentally challenging Nafion ionomer with hydroxypropyl methylcellulose (HPMC) as an anode binder. HPMC, an eco-friendly and cost-effective material, was cross-linked with citric acid to form a durable hydrogel that enhances water and proton transport within the catalyst layer. Using the cross-linked HPMC binder allowed a reduction in cost to 1/54 compared to Nafion ionomer, while the performance of the cross-linked HPMC electrodes remained comparable to Nafion electrodes.

View Article and Find Full Text PDF

Implantation of a mesh loaded with mesenchymal stem cells (MSCs) is a common approach for the treatment of pelvic organ prolapse (POP). The mesh provides effective support to pelvic floor, enhancing muscle contraction of pelvic organs while reducing inflammation. In this study, a fully degradable mesh is designed for the treatment of POP, utilizing MSCs stimulated by a galvanic battery-powered electric field.

View Article and Find Full Text PDF

Biomimetic gastric microtissue electrochemical biosensors for ovalbumin detection.

Biosens Bioelectron

March 2025

College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, PR China. Electronic address:

An innovative integrated three-dimensional (3D) bioprinted gastric microtissue electrochemical biosensor was developed in this study for the detection of allergen ovalbumin (OVA). In this system, OVA triggers the release of histamine from gastric microtissue, which then undergoes a redox reaction on the electrode surface, leading to an increase in the peak current. Gelatin methacrylate hydrogel serves as a scaffold for the 3D culture of RBL-2H3 and PC-12 cells for partially restoring allergic reactions in the human body in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!