Adjuvant immunotherapy in melanoma patients improves clinical outcomes. However, success is unpredictable due to inherited heterogeneity of immune responses. Inherent immune genes associated with single nucleotide polymorphisms (SNPs) may influence anti-tumor immune responses. We assessed the predictive ability of 26 immune-gene SNPs genomic panels for a clinical response to adjuvant BCG (Bacillus Calmette-Guérin) immunotherapy, using melanoma patient cohorts derived from three phase III multicenter clinical trials: AJCC (American Joint Committee on Cancer) stage IV patients given adjuvant BCG (; = 92), AJCC stage III patients given adjuvant BCG (; = 269), and AJCC stage III patients that are sentinel lymph node (SLN) positive receiving no immunotherapy (; = 80). The SNP panel analysis demonstrated that the responder patient group had an improved disease-free survival (DFS) (hazard ratio [HR] 1.84, 95% CI 1.09-3.13, = 0.021) in the pilot cohort. In the verification cohort, an improved overall survival (OS) (HR 1.67, 95% CI 1.07-2.67, = 0.025) was observed. No significant differences of SNPs were observed in DFS or OS in the control patient cohort. This study demonstrates that SNP immune genes can be utilized as a predictive tool for identifying melanoma patients that are inherently responsive to BCG and potentially other immunotherapies in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795941 | PMC |
http://dx.doi.org/10.3390/cancers13010091 | DOI Listing |
Biol Sex Differ
January 2025
Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, 98195, USA.
Background: X chromosome inactivation (XCI) is a female-specific process in which one X chromosome is silenced to balance X-linked gene expression between the sexes. XCI is initiated in early development by upregulation of the lncRNA Xist on the future inactive X (Xi). A subset of X-linked genes escape silencing and thus have higher expression in females, suggesting female-specific functions.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
Background: Epilepsy has a genetic predisposition, yet causal factors and the dynamics of the immune environment in epilepsy are not fully understood.
Methods: We analyzed peripheral blood samples from epilepsy patients, identifying key genes associated with epilepsy risk through Mendelian randomization, using eQTLGen and genome-wide association studies. The peripheral immune environment's composition in epilepsy was explored using CIBERSORT.
Sci Rep
January 2025
Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
Early missed abortion is defined as a pregnancy of ≤ 12 weeks in which there is a cessation of life in the developing embryo or fetus, leading to its retention within the uterine cavity without being spontaneously expelled promptly. This condition is commonly observed and significantly impacts human reproductive health. This study aimed to identify key genes related to ferroptosis that could serve as novel biomarkers for early missed abortion.
View Article and Find Full Text PDFCell Tissue Res
January 2025
Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 75236, Uppsala, Sweden.
The hematopoietic tissue (HPT) and anterior proliferation center (APC) are the main hemocyte-producing organs of the freshwater crayfish, Pacifastacus leniusculus. To deepen our understanding of immune responses to various pathogens, it is essential to identify distinct hemocyte subpopulations with specific functions and to further explore how these cells are generated. Here we provide an in-depth histological study of the HPT and APC in order to localize cell types in different developmental stages, and to provide some information regarding the hemocyte differentiation in the crayfish.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2025
Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
DNA damage in cells induces the expression of inflammatory genes. However, the mechanism by which cells initiate an innate immune response in the presence of DNA lesions blocking transcription remains unknown. Here we find that genotoxic stresses lead to an acute activation of the transcription factor NF-κB through two distinct pathways, each triggered by different types of DNA lesions and coordinated by either ataxia-telangiectasia mutated (ATM) or IRAK1 kinases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!