In this study, we present the fabrication of nitrile butadiene rubber/waste leather fiber (NBR/WLF) composites with different weight percentages of WLF and NBR (0/100, 20/80, 30/70, 40/60, 50/50, 60/40 /). WLF was prepared by cutting the scrap leathers from the waste product of the Vietnamese leather industry. Subsequently, in order to make the short fibers, it was mixed by a hammer mill. The characteristics of WLF/NBR composites such as mechanical properties (tensile strength, tear strength, hardness), dynamic mechanical properties, toluene absorption, and morphology were carefully evaluated. As a result, the tensile strength and tear strength become larger with increasing WLF content from 0 to 50 wt% and they decrease when further increasing WLF content. The highest tensile strength of 12.5 MPa and tear strength of 72.47 N/mm were achieved with the WLF/NBR ratio of 50/50 wt%. Both hardness and resistance of the developed materials with toluene increased with increasing WLF content. The SEM results showed a good adhesion of NBR matrix and the WLF. The increasing of storage modulus (E') in comparison with raw NBR showed good compatibility between WLF and NBR matrix. This research showed that the recycled material from waste leather and NBR was successfully prepared and has great potential for manufacturing products such as floor covering courts and playgrounds, etc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796264 | PMC |
http://dx.doi.org/10.3390/polym13010117 | DOI Listing |
Int J Biol Macromol
January 2025
College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Seafood, Zhanjiang 524088, China. Electronic address:
This study aimed to investigate the structural characteristics of Stichopus horrens collagen (SHC), Holothuria scabra collagen (HSC), and Holothuria leucospilota collagen (HLC) and to assess the effect of transglutaminase (TGase) on their film-forming properties. The results indicated that the collagens from three species of sea cucumbers were type I collagen with a complete triple helical structure. The thermal denaturation temperature of HLC (34.
View Article and Find Full Text PDFBiomaterials
December 2024
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China. Electronic address:
The effective prevention and treatment of anastomotic leakage after intestinal anastomosis for colorectal diseases is still a major clinical challenge. In order to assist intestinal anastomosis healing and avoid anastomotic leakage caused by high tension, low blood supply or infection, we designed a double-layer nanofiber intestinal anastomosis scaffold, which was composed of electrospun PTMC/PHA nanofibers as the main layer, and electrospun PVA/OHA-Gs nanofibers with antibacterial properties as the antibacterial surface layer. This double-layer scaffold has good toughness, its maximum tensile force value could reach 8 N, elongation could reach 400 %, and it has hydrophilic properties, and its contact angle was about 60°.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
Sustainable pavement is essential for country development, offering durable, environmentally friendly, and cost-effective infrastructure. For Malaysia, sustainable pavement supports Sustainable Development Goals (SDGs) 9 and 11 while addressing road deterioration caused by increasing traffic volumes and loads. This deterioration shortens pavement service life and necessitates frequent maintenance, driving the need for innovative solutions.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Civil Engineering, Escuela Politécnica Superior, University of Burgos, c/ Villadiego s/n, 09001, Burgos, Spain. Electronic address:
The management of end-of-life wind-turbine blades in the coming years will be necessary, as a clear solution for their recycling is yet to be found due to their complex composition. The suitability of their mechanical recycling is therefore evaluated in this paper, obtaining Raw-Crushed Wind-Turbine Blade (RCWTB) for subsequent incorporation in high amounts of up to 10% vol. in concrete, replacing the aggregates to achieve Fiber-Reinforced Concrete (FRC).
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China. Electronic address:
Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!